Combinatorial Designs Constructions and Analysis /

Created to teach students many of the most important techniques used for constructing combinatorial designs, this is an ideal textbook for advanced undergraduate and graduate courses in combinatorial design theory. The text features clear explanations of basic designs, such as Steiner and Kirkman tr...

Full description

Bibliographic Details
Main Author: Stinson, Douglas R. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2004.
Subjects:
Online Access:View fulltext via EzAccess
LEADER 03246nam a22005175i 4500
001 23461
003 DE-He213
005 20151204142841.0
007 cr nn 008mamaa
008 100301s2004 xxu| s |||| 0|eng d
020 # # |a 9780387217376  |9 978-0-387-21737-6 
024 7 # |a 10.1007/b97564  |2 doi 
050 # 4 |a QA150-272 
072 # 7 |a PBD  |2 bicssc 
072 # 7 |a MAT008000  |2 bisacsh 
082 0 4 |a 511.1  |2 23 
100 1 # |a Stinson, Douglas R.  |e author. 
245 1 0 |a Combinatorial Designs  |b Constructions and Analysis /  |c by Douglas R. Stinson.  |h [electronic resource] : 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2004. 
300 # # |a XVI, 300 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a to Balanced Incomplete Block Designs -- Symmetric BIBDs -- Difference Sets and Automorphisms of Designs -- Hadamard Matrices and Designs -- Resolvable BIBDs -- Latin Squares -- Pairwise Balanced Designs I: Designs with Specified Block Sizes -- Pairwise Balanced Designs II: Minimal Designs -- t-Designs and t-wise Balanced Designs -- Orthogonal Arrays and Codes -- Selected Applications of Combinatorial Designs. 
520 # # |a Created to teach students many of the most important techniques used for constructing combinatorial designs, this is an ideal textbook for advanced undergraduate and graduate courses in combinatorial design theory. The text features clear explanations of basic designs, such as Steiner and Kirkman triple systems, mutual orthogonal Latin squares, finite projective and affine planes, and Steiner quadruple systems. In these settings, the student will master various construction techniques, both classic and modern, and will be well-prepared to construct a vast array of combinatorial designs. Design theory offers a progressive approach to the subject, with carefully ordered results. It begins with simple constructions that gradually increase in complexity. Each design has a construction that contains new ideas or that reinforces and builds upon similar ideas previously introduced. A new text/reference covering all apsects of modern combinatorial design theory. Graduates and professionals in computer science, applied mathematics, combinatorics, and applied statistics will find the book an essential resource. 
650 # 0 |a Mathematics. 
650 # 0 |a Computer science  |x Mathematics. 
650 # 0 |a Life sciences. 
650 # 0 |a Mathematical models. 
650 # 0 |a Probabilities. 
650 # 0 |a Discrete mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Discrete Mathematics. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Life Sciences, general. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387954875 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b97564  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-BAE 
950 # # |a Mathematics and Statistics (Springer-11649)