The Calculus of Variations

Thecalculusofvariationshasalonghistoryofinteractionwithotherbranches of mathematics such as geometry and di?erential equations, and with physics, particularly mechanics. More recently, the calculus of variations has found applicationsinother?eldssuchaseconomicsandelectricalengineering. Much of the m...

Full description

Bibliographic Details
Main Author: Brunt, Bruce van. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2004.
Series:Universitext
Subjects:
Online Access:View fulltext via EzAccess
LEADER 03495nam a22004815i 4500
001 23442
003 DE-He213
005 20151125022034.0
007 cr nn 008mamaa
008 100301s2004 xxu| s |||| 0|eng d
020 # # |a 9780387216973  |9 978-0-387-21697-3 
024 7 # |a 10.1007/b97436  |2 doi 
050 # 4 |a QA315-316 
050 # 4 |a QA402.3 
050 # 4 |a QA402.5-QA402.6 
072 # 7 |a PBKQ  |2 bicssc 
072 # 7 |a PBU  |2 bicssc 
072 # 7 |a MAT005000  |2 bisacsh 
072 # 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 # |a Brunt, Bruce van.  |e author. 
245 1 4 |a The Calculus of Variations  |c by Bruce van Brunt.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2004. 
300 # # |a XIV, 292 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Universitext 
505 0 # |a The First Variation -- Some Generalizations -- Isoperimetric Problems -- Applications to Eigenvalue Problems -- Holonomic and Nonholonomic Constraints -- Problems with Variable Endpoints -- The Hamiltonian Formulation -- NoetherỚ"s Theorem -- The Second Variation. 
520 # # |a Thecalculusofvariationshasalonghistoryofinteractionwithotherbranches of mathematics such as geometry and di?erential equations, and with physics, particularly mechanics. More recently, the calculus of variations has found applicationsinother?eldssuchaseconomicsandelectricalengineering. Much of the mathematics underlying control theory, for instance, can be regarded as part of the calculus of variations. This book is an introduction to the calculus of variations for mathema- cians and scientists. The reader interested primarily in mathematics will ?nd results of interest in geometry and di?erential equations. I have paused at times to develop the proofs of some of these results, and discuss brie?y v- ious topics not normally found in an introductory book on this subject such as the existence and uniqueness of solutions to boundary-value problems, the inverse problem, and Morse theory. I have made ỚSpassive useỚ<U+00fd> of functional analysis (in particular normed vector spaces) to place certain results in c- text and reassure the mathematician that a suitable framework is available for a more rigorous study. For the reader interested mainly in techniques and applications of the calculus of variations, I leavened the book with num- ous examples mostly from physics. In addition, topics such as HamiltonỚ"s Principle, eigenvalue approximations, conservation laws, and nonholonomic constraints in mechanics are discussed. More importantly, the book is written on two levels. The technical details for many of the results can be skipped on the initial reading. The student can thus learn the main results in each chapter and return as needed to the proofs for a deeper understanding. 
650 # 0 |a Mathematics. 
650 # 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387402475 
830 # 0 |a Universitext 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b97436  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-BAE 
950 # # |a Mathematics and Statistics (Springer-11649)