Introduction to Time Series and Forecasting

Some of the key mathematical results are stated without proof in order to make the underlying theory accessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Brockwell, Peter J. (Editor), Davis, Richard A. (Editor)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2002.
Series:Springer Texts in Statistics,
Subjects:
Online Access:View fulltext via EzAccess
LEADER 03940nam a22005415i 4500
001 23430
003 DE-He213
005 20151204185844.0
007 cr nn 008mamaa
008 100301s2002 xxu| s |||| 0|eng d
020 # # |a 9780387216577  |9 978-0-387-21657-7 
024 7 # |a 10.1007/b97391  |2 doi 
050 # 4 |a QA76.75-76.765 
072 # 7 |a UFM  |2 bicssc 
072 # 7 |a COM077000  |2 bisacsh 
082 0 4 |a 004  |2 23 
245 1 0 |a Introduction to Time Series and Forecasting  |c edited by Peter J. Brockwell, Richard A. Davis.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2002. 
300 # # |a XIV, 437 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Texts in Statistics,  |x 1431-875X 
505 0 # |a Stationary Processes -- ARMA Models -- Spectral Analysis -- Modeling and Forecasting with ARMA Processes -- Nonstationary and Seasonal Time Series Models -- Multivariate Time Series -- State-Space Models -- Forecasting Techniques -- Further Topics -- Erratum. 
520 # # |a Some of the key mathematical results are stated without proof in order to make the underlying theory accessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and nonstationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introductions are also given to cointegration and to nonlinear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis. 
650 # 0 |a Mathematics. 
650 # 0 |a Computer software. 
650 # 0 |a Probabilities. 
650 # 0 |a Statistics. 
650 # 0 |a Econometrics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Software. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
650 2 4 |a Econometrics. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
700 1 # |a Brockwell, Peter J.  |e editor. 
700 1 # |a Davis, Richard A.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387953519 
830 # 0 |a Springer Texts in Statistics,  |x 1431-875X 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b97391  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-BAE 
950 # # |a Mathematics and Statistics (Springer-11649)