Branching Processes in Biology

This book provides a theoretical background of branching process and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, hum...

Full description

Bibliographic Details
Main Authors: Kimmel, Marek. (Author), Axelrod, David E. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2002.
Series:Interdisciplinary Applied Mathematics, 19
Subjects:
Online Access:View fulltext via EzAccess
LEADER 03133nam a22005535i 4500
001 23423
003 DE-He213
005 20151204142429.0
007 cr nn 008mamaa
008 100301s2002 xxu| s |||| 0|eng d
020 # # |a 9780387216393  |9 978-0-387-21639-3 
024 7 # |a 10.1007/b97371  |2 doi 
050 # 4 |a QH323.5 
050 # 4 |a QH324.2-324.25 
072 # 7 |a PDE  |2 bicssc 
072 # 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 570.285  |2 23 
100 1 # |a Kimmel, Marek.  |e author. 
245 1 0 |a Branching Processes in Biology  |c by Marek Kimmel, David E. Axelrod.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2002. 
300 # # |a XVIII, 232 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Interdisciplinary Applied Mathematics,  |v 19  |x 0939-6047 ; 
505 0 # |a Motivating Examples and Other Preliminaries -- Biological Background -- The Galton-Watson Process -- The Age-Dependent Process: The Markov Case -- The Bellman-Harris Process -- Multitype Processes -- Branching Processes with Infinitely Many Types -- References. 
520 # # |a This book provides a theoretical background of branching process and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution, and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology. 
650 # 0 |a Mathematics. 
650 # 0 |a Bioinformatics. 
650 # 0 |a Cell biology. 
650 # 0 |a Probabilities. 
650 # 0 |a Biomathematics. 
650 # 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical and Computational Biology. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
650 2 4 |a Bioinformatics. 
650 2 4 |a Cell Biology. 
700 1 # |a Axelrod, David E.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387953403 
830 # 0 |a Interdisciplinary Applied Mathematics,  |v 19  |x 0939-6047 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b97371  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-BAE 
950 # # |a Mathematics and Statistics (Springer-11649)