Bifurcation Theory An Introduction with Applications to PDEs /

In the past three decades, bifurcation theory has matured into a well-established and vibrant branch of mathematics. This book gives a unified presentation in an abstract setting of the main theorems in bifurcation theory, as well as more recent and lesser known results. It covers both the local and...

Full description

Bibliographic Details
Main Author: Kielhöfer, Hansjörg. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2004.
Series:Applied Mathematical Sciences, 156
Subjects:
Online Access:View fulltext via EzAccess
LEADER 02761nam a22005415i 4500
001 23420
003 DE-He213
005 20151030021121.0
007 cr nn 008mamaa
008 121227s2004 xxu| s |||| 0|eng d
020 # # |a 9780387216331  |9 978-0-387-21633-1 
024 7 # |a 10.1007/b97365  |2 doi 
050 # 4 |a QA370-380 
072 # 7 |a PBKJ  |2 bicssc 
072 # 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 # |a Kielhöfer, Hansjörg.  |e author. 
245 1 0 |a Bifurcation Theory  |b An Introduction with Applications to PDEs /  |c by Hansjörg Kielhöfer.  |h [electronic resource] : 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2004. 
300 # # |a VIII, 348 p. 38 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Applied Mathematical Sciences,  |v 156  |x 0066-5452 ; 
505 0 # |a Local Theory -- Global Theory -- Applications. 
520 # # |a In the past three decades, bifurcation theory has matured into a well-established and vibrant branch of mathematics. This book gives a unified presentation in an abstract setting of the main theorems in bifurcation theory, as well as more recent and lesser known results. It covers both the local and global theory of one-parameter bifurcations for operators acting in infinite-dimensional Banach spaces, and shows how to apply the theory to problems involving partial differential equations. In addition to existence, qualitative properties such as stability and nodal structure of bifurcating solutions are treated in depth. This volume will serve as an important reference for mathematicians, physicists, and theoretically-inclined engineers working in bifurcation theory and its applications to partial differential equations. 
650 # 0 |a Mathematics. 
650 # 0 |a Dynamics. 
650 # 0 |a Ergodic theory. 
650 # 0 |a Partial differential equations. 
650 # 0 |a Applied mathematics. 
650 # 0 |a Engineering mathematics. 
650 # 0 |a Mechanics. 
650 # 0 |a Mechanics, Applied. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Theoretical and Applied Mechanics. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781468493801 
830 # 0 |a Applied Mathematical Sciences,  |v 156  |x 0066-5452 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b97365  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-BAE 
950 # # |a Mathematics and Statistics (Springer-11649)