Computational Homology

In recent years, there has been a growing interest in applying homology to problems involving geometric data sets, whether obtained from physical measurements or generated through numerical simulations. This book presents a novel approach to homology that emphasizes the development of efficient algo...

Full description

Bibliographic Details
Main Authors: Kaczynski, Tomasz. (Author), Mischaikow, Konstantin. (Author), Mrozek, Marian. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2004.
Series:Applied Mathematical Sciences, 157
Subjects:
Online Access:View fulltext via EzAccess
LEADER 03434nam a22006135i 4500
001 23410
003 DE-He213
005 20151204185843.0
007 cr nn 008mamaa
008 121227s2004 xxu| s |||| 0|eng d
020 # # |a 9780387215976  |9 978-0-387-21597-6 
024 7 # |a 10.1007/b97315  |2 doi 
050 # 4 |a QA611-614.97 
072 # 7 |a PBP  |2 bicssc 
072 # 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514  |2 23 
100 1 # |a Kaczynski, Tomasz.  |e author. 
245 1 0 |a Computational Homology  |c by Tomasz Kaczynski, Konstantin Mischaikow, Marian Mrozek.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2004. 
300 # # |a XVIII, 482 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Applied Mathematical Sciences,  |v 157  |x 0066-5452 ; 
505 0 # |a Homology -- Preview -- Cubical Homology -- Computing Homology Groups -- Chain Maps and Reduction Algorithms -- Preview of Maps -- Homology of Maps -- Computing Homology of Maps -- Extensions -- Prospects in Digital Image Processing -- Homological Algebra -- Nonlinear Dynamics -- Homology of Topological Polyhedra -- Tools from Topology and Algebra -- Topology -- Algebra -- Syntax of Algorithms. 
520 # # |a In recent years, there has been a growing interest in applying homology to problems involving geometric data sets, whether obtained from physical measurements or generated through numerical simulations. This book presents a novel approach to homology that emphasizes the development of efficient algorithms for computation. As well as providing a highly accessible introduction to the mathematical theory, the authors describe a variety of potential applications of homology in fields such as digital image processing and nonlinear dynamics. The material is aimed at a broad audience of engineers, computer scientists, nonlinear scientists, and applied mathematicians. Mathematical prerequisites have been kept to a minimum and there are numerous examples and exercises throughout the text. The book is complemented by a website containing software programs and projects that help to further illustrate the material described within. 
650 # 0 |a Mathematics. 
650 # 0 |a Category theory (Mathematics). 
650 # 0 |a Homological algebra. 
650 # 0 |a Dynamics. 
650 # 0 |a Ergodic theory. 
650 # 0 |a Applied mathematics. 
650 # 0 |a Engineering mathematics. 
650 # 0 |a Computer mathematics. 
650 # 0 |a Topology. 
650 # 0 |a Algebraic topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Topology. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Category Theory, Homological Algebra. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Algebraic Topology. 
700 1 # |a Mischaikow, Konstantin.  |e author. 
700 1 # |a Mrozek, Marian.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441923547 
830 # 0 |a Applied Mathematical Sciences,  |v 157  |x 0066-5452 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b97315  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-BAE 
950 # # |a Mathematics and Statistics (Springer-11649)