Elliptic Curves

This book is an introduction to the theory of elliptic curves, ranging from elementary topics to current research. The first chapters, which grew out of Tate's Haverford Lectures, cover the arithmetic theory of elliptic curves over the field of rational numbers. This theory is then recast into...

Full description

Bibliographic Details
Main Author: Husem©œller, Dale. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2004.
Edition:Second Edition.
Series:Graduate Texts in Mathematics, 111
Subjects:
Online Access:View fulltext via EzAccess
LEADER 03920nam a22004455i 4500
001 23400
003 DE-He213
005 20151204160918.0
007 cr nn 008mamaa
008 100301s2004 xxu| s |||| 0|eng d
020 # # |a 9780387215778  |9 978-0-387-21577-8 
024 7 # |a 10.1007/b97292  |2 doi 
050 # 4 |a QA564-609 
072 # 7 |a PBMW  |2 bicssc 
072 # 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 # |a Husem©œller, Dale.  |e author. 
245 1 0 |a Elliptic Curves  |c by Dale Husem©œller.  |h [electronic resource] / 
250 # # |a Second Edition. 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2004. 
300 # # |a XXII, 490 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Graduate Texts in Mathematics,  |v 111  |x 0072-5285 ; 
505 0 # |a to Rational Points on Plane Curves -- Elementary Properties of the Chord-Tangent Group Law on a Cubic Curve -- Plane Algebraic Curves -- Elliptic Curves and Their Isomorphisms -- Families of Elliptic Curves and Geometric Properties of Torsion Points -- Reduction mod p and Torsion Points -- Proof of MordellỚ"s Finite Generation Theorem -- Galois Cohomology and Isomorphism Classification of Elliptic Curves over Arbitrary Fields -- Descent and Galois Cohomology -- Elliptic and Hypergeometric Functions -- Theta Functions -- Modular Functions -- Endomorphisms of Elliptic Curves -- Elliptic Curves over Finite Fields -- Elliptic Curves over Local Fields -- Elliptic Curves over Global Fields and ?-Adic Representations -- L-Function of an Elliptic Curve and Its Analytic Continuation -- Remarks on the Birch and Swinnerton-Dyer Conjecture -- Remarks on the Modular Elliptic Curves Conjecture and FermatỚ"s Last Theorem -- Higher Dimensional Analogs of Elliptic Curves: Calabi-Yau Varieties -- Families of Elliptic Curves. 
520 # # |a This book is an introduction to the theory of elliptic curves, ranging from elementary topics to current research. The first chapters, which grew out of Tate's Haverford Lectures, cover the arithmetic theory of elliptic curves over the field of rational numbers. This theory is then recast into the powerful and more general language of Galois cohomology and descent theory. An analytic section of the book includes such topics as elliptic functions, theta functions, and modular functions. Next, the book discusses the theory of elliptic curves over finite and local fields and provides a survey of results in the global arithmetic theory, especially those related to the conjecture of Birch and Swinnerton-Dyer. This new edition contains three new chapters. The first is an outline of Wiles's proof of Fermat's Last Theorem. The two additional chapters concern higher-dimensional analogues of elliptic curves, including K3 surfaces and Calabi-Yau manifolds. Two new appendices explore recent applications of elliptic curves and their generalizations. The first, written by Stefan Theisen, examines the role of Calabi-Yau manifolds and elliptic curves in string theory, while the second, by Otto Forster, discusses the use of elliptic curves in computing theory and coding theory. About the First Edition: "All in all the book is well written, and can serve as basis for a student seminar on the subject." -G. Faltings, Zentralblatt. 
650 # 0 |a Mathematics. 
650 # 0 |a Algebraic geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387954905 
830 # 0 |a Graduate Texts in Mathematics,  |v 111  |x 0072-5285 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b97292  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-BAE 
950 # # |a Mathematics and Statistics (Springer-11649)