Statistical Tools for Nonlinear Regression A Practical Guide With S-PLUS and R Examples /

Statistical Tools for Nonlinear Regression, (Second Edition), presents methods for analyzing data using parametric nonlinear regression models. The new edition has been expanded to include binomial, multinomial and Poisson non-linear models. Using examples from experiments in agronomy and biochemist...

Full description

Bibliographic Details
Main Authors: Huet, S. (Author), Bouvier, A. (Author), Poursat, M. -A. (Author), Jolivet, E. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2004.
Edition:Second Edition.
Series:Springer Series in Statistics,
Subjects:
Online Access:View fulltext via EzAccess
LEADER 04259nam a22004815i 4500
001 23398
003 DE-He213
005 20151204163549.0
007 cr nn 008mamaa
008 100301s2004 xxu| s |||| 0|eng d
020 # # |a 9780387215747  |9 978-0-387-21574-7 
024 7 # |a 10.1007/b97288  |2 doi 
050 # 4 |a QA276-280 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 # |a Huet, S.  |e author. 
245 1 0 |a Statistical Tools for Nonlinear Regression  |b A Practical Guide With S-PLUS and R Examples /  |c by S. Huet, A. Bouvier, M. -A. Poursat, E. Jolivet.  |h [electronic resource] : 
250 # # |a Second Edition. 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2004. 
300 # # |a XIV, 234 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Series in Statistics,  |x 0172-7397 
505 0 # |a Nonlinear Regression Model and Parameter Estimation -- Accuracy of Estimators, Confidence Intervals and Tests -- Variance Estimation -- Diagnostics of Model Misspecification -- Calibration and Prediction -- Binomial Nonlinear Models -- Multinomial and Poisson Nonlinear Models. 
520 # # |a Statistical Tools for Nonlinear Regression, (Second Edition), presents methods for analyzing data using parametric nonlinear regression models. The new edition has been expanded to include binomial, multinomial and Poisson non-linear models. Using examples from experiments in agronomy and biochemistry, it shows how to apply these methods. It concentrates on presenting the methods in an intuitive way rather than developing the theoretical backgrounds. The examples are analyzed with the free software nls2 updated to deal with the new models included in the second edition. The nls2 package is implemented in S-Plus and R. Its main advantages are to make the model building, estimation and validation tasks, easy to do. More precisely, Complex models can be easily described using a symbolic syntax. The regression function as well as the variance function can be defined explicitly as functions of independent variables and of unknown parameters or they can be defined as the solution to a system of differential equations. Moreover, constraints on the parameters can easily be added to the model. It is thus possible to test nested hypotheses and to compare several data sets. Several additional tools are included in the package for calculating confidence regions for functions of parameters or calibration intervals, using classical methodology or bootstrap. Some graphical tools are proposed for visualizing the fitted curves, the residuals, the confidence regions, and the numerical estimation procedure. This book is aimed at scientists who are not familiar with statistical theory, but have a basic knowledge of statistical concepts. It includes methods based on classical nonlinear regression theory and more modern methods, such as bootstrap, which have proved effective in practice. The additional chapters of the second edition assume some practical experience in data analysis using generalized linear models. The book will be of interest both for practitioners as a guide and a reference book, and for students, as a tutorial book. Sylvie Huet and Emmanuel Jolivet are senior researchers and Annie Bouvier is computing engineer at INRA, National Institute of Agronomical Research, France; Marie-Anne Poursat is associate professor of statistics at the University Paris XI. 
650 # 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
700 1 # |a Bouvier, A.  |e author. 
700 1 # |a Poursat, M. -A.  |e author. 
700 1 # |a Jolivet, E.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387400815 
830 # 0 |a Springer Series in Statistics,  |x 0172-7397 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b97288  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-BAE 
950 # # |a Mathematics and Statistics (Springer-11649)