|
|
|
|
LEADER |
03061nam a22004695i 4500 |
001 |
23378 |
003 |
DE-He213 |
005 |
20151204160918.0 |
007 |
cr nn 008mamaa |
008 |
100301s1992 xxu| s |||| 0|eng d |
020 |
# |
# |
|a 9780387215273
|9 978-0-387-21527-3
|
024 |
7 |
# |
|a 10.1007/b97238
|2 doi
|
050 |
# |
4 |
|a QA299.6-433
|
072 |
# |
7 |
|a PBK
|2 bicssc
|
072 |
# |
7 |
|a MAT034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515
|2 23
|
100 |
1 |
# |
|a Axler, Sheldon.
|e author.
|
245 |
1 |
0 |
|a Harmonic Function Theory
|c by Sheldon Axler, Paul Bourdon, Wade Ramey.
|h [electronic resource] /
|
264 |
# |
1 |
|a New York, NY :
|b Springer New York :
|b Imprint: Springer,
|c 1992.
|
300 |
# |
# |
|a XII, 233 p.
|b online resource.
|
336 |
# |
# |
|a text
|b txt
|2 rdacontent
|
337 |
# |
# |
|a computer
|b c
|2 rdamedia
|
338 |
# |
# |
|a online resource
|b cr
|2 rdacarrier
|
347 |
# |
# |
|a text file
|b PDF
|2 rda
|
490 |
1 |
# |
|a Graduate Texts in Mathematics,
|v 137
|x 0072-5285 ;
|
505 |
0 |
# |
|a Basic Properties of Harmonic Functions -- Bounded Harmonic Functions -- Positive Harmonic Functions -- The Kelvin Transform -- Harmonic Polynomials -- Harmonic Hardy Spaces -- Harmonic Functions on Half-Spaces -- Harmonic Bergman Spaces -- The Decomposition Theorem -- Annular Regions -- The Dirichlet Problem and Boundary Behavior.
|
520 |
# |
# |
|a Harmonic functions - the solutions of Laplace's equation - play a crucial role in many areas of mathematics, physics, and engineering. Avoiding the disorganization and inconsistent notation of other expositions, the authors approach the field from a more function-theoretic perspective, emphasizing techniques and results that will seem natural to mathematicians comfortable with complex function theory and harmonic analysis; prerequisites for the book are a solid foundation in real and complex analysis together with some basic results from functional analysis. Topics covered include: basic properties of harmonic functions defined on subsets of Rn, including Poisson integrals; properties bounded functions and positive functions, including Liouville's and Cauchy's theorems; the Kelvin transform; Spherical harmonics; hp theory on the unit ball and on half-spaces; harmonic Bergman spaces; the decomposition theorem; Laurent expansions and classification of isolated singularities; and boundary behavior. An appendix describes routines for use with MATHEMATICA to manipulate some of the expressions that arise in the study of harmonic functions.
|
650 |
# |
0 |
|a Mathematics.
|
650 |
# |
0 |
|a Mathematical analysis.
|
650 |
# |
0 |
|a Analysis (Mathematics).
|
650 |
1 |
4 |
|a Mathematics.
|
650 |
2 |
4 |
|a Analysis.
|
700 |
1 |
# |
|a Bourdon, Paul.
|e author.
|
700 |
1 |
# |
|a Ramey, Wade.
|e author.
|
710 |
2 |
# |
|a SpringerLink (Online service)
|
773 |
0 |
# |
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9781489911865
|
830 |
# |
0 |
|a Graduate Texts in Mathematics,
|v 137
|x 0072-5285 ;
|
856 |
4 |
0 |
|u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b97238
|z View fulltext via EzAccess
|
912 |
# |
# |
|a ZDB-2-SMA
|
912 |
# |
# |
|a ZDB-2-BAE
|
950 |
# |
# |
|a Mathematics and Statistics (Springer-11649)
|