Remote Sensing and Climate Modeling: Synergies and Limitations

1 2 Michel M. VERSTRAETE and Martin BENISTON 1 Space Applications Institute, EC Joint Research Centre, Ispra, Italy 2 Department of Geography, University of Fribourg, Switzerland This volume contains the proceedings ofthe workshop entitled ỚSSatellite Remote Sensing and Climate Simulations: Synerg...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Beniston, Martin. (Editor), Verstraete, Michel M. (Editor)
Format: Electronic
Language:English
Published: Dordrecht : Springer Netherlands : Imprint: Springer, 2001.
Series:Advances in Global Change Research, 7
Subjects:
Online Access:View fulltext via EzAccess
LEADER 04610nam a22005175i 4500
001 23259
003 DE-He213
005 20151204182446.0
007 cr nn 008mamaa
008 100301s2001 ne | s |||| 0|eng d
020 # # |a 9780306481499  |9 978-0-306-48149-9 
024 7 # |a 10.1007/0-306-48149-9  |2 doi 
050 # 4 |a QC851-999 
072 # 7 |a RB  |2 bicssc 
072 # 7 |a SCI042000  |2 bisacsh 
082 0 4 |a 551.5  |2 23 
245 1 0 |a Remote Sensing and Climate Modeling: Synergies and Limitations  |c edited by Martin Beniston, Michel M. Verstraete.  |h [electronic resource] / 
264 # 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2001. 
300 # # |a X, 346 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Advances in Global Change Research,  |v 7  |x 1574-0919 ; 
505 0 # |a A global vegetation index for SeaWiFS: Design and applications -- Modeling sensible heat flux using estimates of soil and vegetation temperatures: the HEIFE and IMGRASS experiments -- Exploitation of Surface Albedo Derived From the Meteosat Data to Characterize Land Surface Changes -- Towards a Climatology of Australian Land Surface Albedo for use in Climate Models -- Collocated surface and satellite observations as constraints for Earth radiation budget simulations with global climate models -- How well do aerosol retrievals from satellites and representation in global circulation models match ground-based AERONET aerosol statistics? -- Remote Sensing of Snow and Characterization of Snow Albedo for Climate Simulations -- Using the Special Sensor Microwave Imager to Monitor Surface Wetness and Temperature -- Snow Cover Fraction In A General Circulation Model -- Boreal Forest Fire Regimes And Climate Change -- Specification of surface characteristics for use in a high resolution regional climate model: on the role of glaciers in the swiss alps -- Using Satellite Data Assimilation to Infer Global Soil Moisture Status and Vegetation Feedback to Climate -- The Use of Remotely-Sensed Data for the Estimation of Energy Balance Components in a Mountainous Catchment Area -- Integration of operationally available remote sensing and synoptic data for surface energy balance modelling and environmental applications on the regional scale. 
520 # # |a 1 2 Michel M. VERSTRAETE and Martin BENISTON 1 Space Applications Institute, EC Joint Research Centre, Ispra, Italy 2 Department of Geography, University of Fribourg, Switzerland This volume contains the proceedings ofthe workshop entitled ỚSSatellite Remote Sensing and Climate Simulations: Synergies and LimitationsỚ<U+00fd> that took place in Les Diablerets, Switzerland, September 20Ớ<U+001c>24, 1999. This international scientific conference aimed at addressing the current and pot- tial role of satellite remote sensing in climate modeling, with a particular focus on land surface processes and atmospheric aerosol characterization. Global and regional circulation models incorporate our knowledge ofthe dynamics ofthe Earth's atmosphere. They are used to predict the evolution of the weather and climate. Mathematically, this system is represented by a set ofpartial differential equations whose solution requires initial and bo- dary conditions. Limitations in the accuracy and geographical distribution of these constraints, and intrinsic mathematical sensitivity to these conditions do not allow the identification of a unique solution (prediction). Additional observations on the climate system are thus used to constrain the forecasts of the mathematical model to remain close to the observed state ofthe system. 
650 # 0 |a Earth sciences. 
650 # 0 |a Science. 
650 # 0 |a Atmospheric sciences. 
650 # 0 |a Geographical information systems. 
650 # 0 |a Climate change. 
650 1 4 |a Earth Sciences. 
650 2 4 |a Atmospheric Sciences. 
650 2 4 |a Geographical Information Systems/Cartography. 
650 2 4 |a Science, general. 
650 2 4 |a Climate Change. 
700 1 # |a Beniston, Martin.  |e editor. 
700 1 # |a Verstraete, Michel M.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789048156481 
830 # 0 |a Advances in Global Change Research,  |v 7  |x 1574-0919 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/0-306-48149-9  |z View fulltext via EzAccess 
912 # # |a ZDB-2-EES 
912 # # |a ZDB-2-BAE 
950 # # |a Earth and Environmental Science (Springer-11646)