Foundations of Bilevel Programming

Bilevel programming problems are hierarchical optimization problems where the constraints of one problem (the so-called upper level problem) are defined in part by a second parametric optimization problem (the lower level problem). If the lower level problem has a unique optimal solution for all par...

Full description

Bibliographic Details
Main Author: Dempe, Stephan. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston, MA : Springer US, 2002.
Series:Nonconvex Optimization and Its Applications, 61
Subjects:
Online Access:View fulltext via EzAccess
LEADER 03416nam a22005535i 4500
001 23187
003 DE-He213
005 20151204150417.0
007 cr nn 008mamaa
008 100301s2002 xxu| s |||| 0|eng d
020 # # |a 9780306480454  |9 978-0-306-48045-4 
024 7 # |a 10.1007/b101970  |2 doi 
050 # 4 |a QA315-316 
050 # 4 |a QA402.3 
050 # 4 |a QA402.5-QA402.6 
072 # 7 |a PBKQ  |2 bicssc 
072 # 7 |a PBU  |2 bicssc 
072 # 7 |a MAT005000  |2 bisacsh 
072 # 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 # |a Dempe, Stephan.  |e author. 
245 1 0 |a Foundations of Bilevel Programming  |c by Stephan Dempe.  |h [electronic resource] / 
264 # 1 |a Boston, MA :  |b Springer US,  |c 2002. 
300 # # |a VIII, 309 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Nonconvex Optimization and Its Applications,  |v 61  |x 1571-568X ; 
505 0 # |a Applications -- Linear Bilevel Problems -- Parametric Optimization -- Optimality Conditions -- Solution Algorithms -- Nonunique Lower Level Solution -- Discrete Bilevel Problems. 
520 # # |a Bilevel programming problems are hierarchical optimization problems where the constraints of one problem (the so-called upper level problem) are defined in part by a second parametric optimization problem (the lower level problem). If the lower level problem has a unique optimal solution for all parameter values, this problem is equivalent to a one-level optimization problem having an implicitly defined objective function. Special emphasize in the book is on problems having non-unique lower level optimal solutions, the optimistic (or weak) and the pessimistic (or strong) approaches are discussed. The book starts with the required results in parametric nonlinear optimization. This is followed by the main theoretical results including necessary and sufficient optimality conditions and solution algorithms for bilevel problems. Stationarity conditions can be applied to the lower level problem to transform the optimistic bilevel programming problem into a one-level problem. Properties of the resulting problem are highlighted and its relation to the bilevel problem is investigated. Stability properties, numerical complexity, and problems having additional integrality conditions on the variables are also discussed. Audience: Applied mathematicians and economists working in optimization, operations research, and economic modelling. Students interested in optimization will also find this book useful. 
650 # 0 |a Mathematics. 
650 # 0 |a Operations research. 
650 # 0 |a Decision making. 
650 # 0 |a Mathematical optimization. 
650 # 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Optimization. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402006319 
830 # 0 |a Nonconvex Optimization and Its Applications,  |v 61  |x 1571-568X ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b101970  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-BAE 
950 # # |a Mathematics and Statistics (Springer-11649)