Nonsmooth Equations in Optimization Regularity, Calculus, Methods and Applications /

Many questions dealing with solvability, stability and solution methods for va- ational inequalities or equilibrium, optimization and complementarity problems lead to the analysis of certain (perturbed) equations. This often requires a - formulation of the initial model being under consideration. Du...

Full description

Bibliographic Details
Main Authors: Klatte, Diethard. (Author), Kummer, Bernd. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston, MA : Springer US, 2002.
Series:Nonconvex Optimization and Its Applications, 60
Subjects:
Online Access:View fulltext via EzAccess
LEADER 04123nam a22005415i 4500
001 22997
003 DE-He213
005 20151030011224.0
007 cr nn 008mamaa
008 100301s2002 xxu| s |||| 0|eng d
020 # # |a 9780306476167  |9 978-0-306-47616-7 
024 7 # |a 10.1007/b130810  |2 doi 
050 # 4 |a QA402.5-402.6 
072 # 7 |a PBU  |2 bicssc 
072 # 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 # |a Klatte, Diethard.  |e author. 
245 1 0 |a Nonsmooth Equations in Optimization  |b Regularity, Calculus, Methods and Applications /  |c by Diethard Klatte, Bernd Kummer.  |h [electronic resource] : 
264 # 1 |a Boston, MA :  |b Springer US,  |c 2002. 
300 # # |a XXVIII, 333 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Nonconvex Optimization and Its Applications,  |v 60  |x 1571-568X ; 
505 0 # |a Basic Concepts -- Regularity and Consequences -- Characterizations of Regularity by Derivatives -- Nonlinear Variations and Implicit Functions -- Closed Mappings in Finite Dimension -- Analysis of Generalized Derivatives -- Critical Points and Generalized Kojima-functions -- Parametric Optimization Problems -- Derivatives and Regularity of Further Nonsmooth Maps -- NewtonỚ"s Method for Lipschitz Equations -- Particular Newton Realizations and Solution Methods -- Basic Examples and Exercises. 
520 # # |a Many questions dealing with solvability, stability and solution methods for va- ational inequalities or equilibrium, optimization and complementarity problems lead to the analysis of certain (perturbed) equations. This often requires a - formulation of the initial model being under consideration. Due to the specific of the original problem, the resulting equation is usually either not differ- tiable (even if the data of the original model are smooth), or it does not satisfy the assumptions of the classical implicit function theorem. This phenomenon is the main reason why a considerable analytical inst- ment dealing with generalized equations (i.e., with finding zeros of multivalued mappings) and nonsmooth equations (i.e., the defining functions are not c- tinuously differentiable) has been developed during the last 20 years, and that under very different viewpoints and assumptions. In this theory, the classical hypotheses of convex analysis, in particular, monotonicity and convexity, have been weakened or dropped, and the scope of possible applications seems to be quite large. Briefly, this discipline is often called nonsmooth analysis, sometimes also variational analysis. Our book fits into this discipline, however, our main intention is to develop the analytical theory in close connection with the needs of applications in optimization and related subjects. Main Topics of the Book 1. Extended analysis of Lipschitz functions and their generalized derivatives, including Ớ<U+00fd>Newton mapsỚ<U+00fd> and regularity of multivalued mappings. 2. Principle of successive approximation under metric regularity and its - plication to implicit functions. 
650 # 0 |a Mathematics. 
650 # 0 |a Approximation theory. 
650 # 0 |a Functional analysis. 
650 # 0 |a Computer mathematics. 
650 # 0 |a Mathematical optimization. 
650 # 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Optimization. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Functional Analysis. 
700 1 # |a Kummer, Bernd.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402005503 
830 # 0 |a Nonconvex Optimization and Its Applications,  |v 60  |x 1571-568X ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b130810  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-BAE 
950 # # |a Mathematics and Statistics (Springer-11649)