Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession The Theory of Gyrogroups and Gyrovector Spaces /

Evidence that Einstein's addition is regulated by the Thomas precession has come to light, turning the notorious Thomas precession, previously considered the ugly duckling of special relativity theory, into the beautiful swan of gyrogroup and gyrovector space theory, where it has been extended...

Full description

Bibliographic Details
Main Author: Ungar, Abraham A. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Dordrecht : Springer Netherlands, 2002.
Series:Fundamental Theories of Physics ; 117
Subjects:
Online Access:View fulltext via EzAccess
LEADER 03949nam a22005175i 4500
001 22738
003 DE-He213
005 20151204175848.0
007 cr nn 008mamaa
008 100301s2002 ne | s |||| 0|eng d
020 # # |a 9780306471346  |9 978-0-306-47134-6 
024 7 # |a 10.1007/0-306-47134-5  |2 doi 
050 # 4 |a QC19.2-20.85 
072 # 7 |a PHU  |2 bicssc 
072 # 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.1  |2 23 
100 1 # |a Ungar, Abraham A.  |e author. 
245 1 0 |a Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession  |b The Theory of Gyrogroups and Gyrovector Spaces /  |c by Abraham A. Ungar.  |h [electronic resource] : 
264 # 1 |a Dordrecht :  |b Springer Netherlands,  |c 2002. 
300 # # |a 464 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Fundamental Theories of Physics ;  |v 117 
505 0 # |a Thomas Precession: The Missing Link -- Gyrogroups: Modeled on EinsteinỚ"S Addition -- The Einstein Gyrovector Space -- Hyperbolic Geometry of Gyrovector Spaces -- The Ungar Gyrovector Space -- The M©<U+0013>bius Gyrovector Space -- Gyrogeometry -- Gyrooprations Ớ the SL(2, c) Approach -- The Cocycle Form -- The Lorentz Group and its Abstraction -- The Lorentz Transformation Link -- Other Lorentz Groups. 
520 # # |a Evidence that Einstein's addition is regulated by the Thomas precession has come to light, turning the notorious Thomas precession, previously considered the ugly duckling of special relativity theory, into the beautiful swan of gyrogroup and gyrovector space theory, where it has been extended by abstraction into an automorphism generator, called the Thomas gyration. The Thomas gyration, in turn, allows the introduction of vectors into hyperbolic geometry, where they are called gyrovectors, in such a way that Einstein's velocity additions turns out to be a gyrovector addition. Einstein's addition thus becomes a gyrocommutative, gyroassociative gyrogroup operation in the same way that ordinary vector addition is a commutative, associative group operation. Some gyrogroups of gyrovectors admit scalar multiplication, giving rise to gyrovector spaces in the same way that some groups of vectors that admit scalar multiplication give rise to vector spaces. Furthermore, gyrovector spaces form the setting for hyperbolic geometry in the same way that vector spaces form the setting for Euclidean geometry. In particular, the gyrovector space with gyrovector addition given by Einstein's (M©œbius') addition forms the setting for the Beltrami (Poincar©♭) ball model of hyperbolic geometry. The gyrogroup-theoretic techniques developed in this book for use in relativity physics and in hyperbolic geometry allow one to solve old and new important problems in relativity physics. A case in point is Einstein's 1905 view of the Lorentz length contraction, which was contradicted in 1959 by Penrose, Terrell and others. The application of gyrogroup-theoretic techniques clearly tilt the balance in favor of Einstein. 
650 # 0 |a Physics. 
650 # 0 |a Nonassociative rings. 
650 # 0 |a Rings (Algebra). 
650 # 0 |a Geometry. 
650 # 0 |a Observations, Astronomical. 
650 # 0 |a Astronomy  |x Observations. 
650 1 4 |a Physics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Astronomy, Observations and Techniques. 
650 2 4 |a Non-associative Rings and Algebras. 
650 2 4 |a Geometry. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780792369097 
830 # 0 |a Fundamental Theories of Physics ;  |v 117 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/0-306-47134-5  |z View fulltext via EzAccess 
912 # # |a ZDB-2-PHA 
912 # # |a ZDB-2-BAE 
950 # # |a Physics and Astronomy (Springer-11651)