New Foundations for Classical Mechanics

(revised) This is a textbook on classical mechanics at the intermediate level, but its main purpose is to serve as an introduction to a new mathematical language for physics called geometric algebra. Mechanics is most commonly formulated today in terms of the vector algebra developed by the American...

Full description

Bibliographic Details
Main Author: Hestenes, David. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Dordrecht : Springer Netherlands, 2002.
Edition:Second Edition.
Series:Fundamental Theories of Physics ; 99
Subjects:
Online Access:View fulltext via EzAccess
LEADER 03265nam a22005415i 4500
001 22726
003 DE-He213
005 20151204162620.0
007 cr nn 008mamaa
008 100301s2002 ne | s |||| 0|eng d
020 # # |a 9780306471223  |9 978-0-306-47122-3 
024 7 # |a 10.1007/0-306-47122-1  |2 doi 
050 # 4 |a QC120-168.85 
050 # 4 |a QA808.2 
072 # 7 |a PHD  |2 bicssc 
072 # 7 |a SCI041000  |2 bisacsh 
082 0 4 |a 531  |2 23 
100 1 # |a Hestenes, David.  |e author. 
245 1 0 |a New Foundations for Classical Mechanics  |c by David Hestenes.  |h [electronic resource] / 
250 # # |a Second Edition. 
264 # 1 |a Dordrecht :  |b Springer Netherlands,  |c 2002. 
300 # # |a XIV, 706 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Fundamental Theories of Physics ;  |v 99 
505 0 # |a Origins of Geometric Algebra -- Developments in Geometric Algebra -- Mechanics of a Single Particle -- Central Forces and Two-Particle Systems -- Operators and Transformations -- Many-Particle Systems -- Rigid Body Mechanics -- Celestical Mechanics -- Relativistic Mechanics. 
520 # # |a (revised) This is a textbook on classical mechanics at the intermediate level, but its main purpose is to serve as an introduction to a new mathematical language for physics called geometric algebra. Mechanics is most commonly formulated today in terms of the vector algebra developed by the American physicist J. Willard Gibbs, but for some applications of mechanics the algebra of complex numbers is more efficient than vector algebra, while in other applications matrix algebra works better. Geometric algebra integrates all these algebraic systems into a coherent mathematical language which not only retains the advantages of each special algebra but possesses powerful new capabilities. This book covers the fairly standard material for a course on the mechanics of particles and rigid bodies. However, it will be seen that geometric algebra brings new insights into the treatment of nearly every topic and produces simplifications that move the subject quickly to advanced levels. That has made it possible in this book to carry the treatment of two major topics in mechanics well beyond the level of other textbooks. A few words are in order about the unique treatment of these two topics, namely, rotational dynamics and celestial mechanics. 
650 # 0 |a Physics. 
650 # 0 |a Algebraic geometry. 
650 # 0 |a System theory. 
650 # 0 |a Mechanics. 
650 # 0 |a Observations, Astronomical. 
650 # 0 |a Astronomy  |x Observations. 
650 1 4 |a Physics. 
650 2 4 |a Mechanics. 
650 2 4 |a Astronomy, Observations and Techniques. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Systems Theory, Control. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780792355144 
830 # 0 |a Fundamental Theories of Physics ;  |v 99 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/0-306-47122-1  |z View fulltext via EzAccess 
912 # # |a ZDB-2-PHA 
912 # # |a ZDB-2-BAE 
950 # # |a Physics and Astronomy (Springer-11651)