Symplectic Methods for the Symplectic Eigenproblem

The solution of eigenvalue problems is an integral part of many scientific computations. For example, the numerical solution of problems in structural dynamics, electrical networks, macro-economics, quantum chemistry, and c- trol theory often requires solving eigenvalue problems. The coefficient mat...

Full description

Bibliographic Details
Main Author: Fassbender, Heike. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston, MA : Springer US, 2002.
Subjects:
Online Access:View fulltext via EzAccess
LEADER 03227nam a22004935i 4500
001 22589
003 DE-He213
005 20151204144131.0
007 cr nn 008mamaa
008 100301s2002 xxu| s |||| 0|eng d
020 # # |a 9780306469787  |9 978-0-306-46978-7 
024 7 # |a 10.1007/b115227  |2 doi 
050 # 4 |a QA297-299.4 
072 # 7 |a UYA  |2 bicssc 
072 # 7 |a COM051300  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 # |a Fassbender, Heike.  |e author. 
245 1 0 |a Symplectic Methods for the Symplectic Eigenproblem  |c by Heike Fassbender.  |h [electronic resource] / 
264 # 1 |a Boston, MA :  |b Springer US,  |c 2002. 
300 # # |a XV, 269 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Preliminaries -- The Butterfly Form for Symplectic Matrices and Matrix Pencils -- Butterfly SR and SZ Algorithms -- The Symplectic Lanczos Algorithm -- Concluding Remarks. 
520 # # |a The solution of eigenvalue problems is an integral part of many scientific computations. For example, the numerical solution of problems in structural dynamics, electrical networks, macro-economics, quantum chemistry, and c- trol theory often requires solving eigenvalue problems. The coefficient matrix of the eigenvalue problem may be small to medium sized and dense, or large and sparse (containing many zeroelements). In the past tremendous advances have been achieved in the solution methods for symmetric eigenvalue pr- lems. The state of the art for nonsymmetric problems is not so advanced; nonsymmetric eigenvalue problems can be hopelessly difficult to solve in some situations due, for example, to poor conditioning. Good numerical algorithms for nonsymmetric eigenvalue problems also tend to be far more complex than their symmetric counterparts. This book deals with methods for solving a special nonsymmetric eig- value problem; the symplectic eigenvalue problem. The symplectic eigenvalue problem is helpful, e.g., in analyzing a number of different questions that arise in linear control theory for discrete-time systems. Certain quadratic eigenvalue problems arising, e.g., in finite element discretization in structural analysis, in acoustic simulation of poro-elastic materials, or in the elastic deformation of anisotropic materials can also lead to symplectic eigenvalue problems. The problem appears in other applications as well. 
650 # 0 |a Computer science. 
650 # 0 |a Numerical analysis. 
650 # 0 |a Matrix theory. 
650 # 0 |a Algebra. 
650 # 0 |a Algorithms. 
650 # 0 |a Calculus of variations. 
650 1 4 |a Computer Science. 
650 2 4 |a Numeric Computing. 
650 2 4 |a Algorithms. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780306464782 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b115227  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SCS 
912 # # |a ZDB-2-BAE 
950 # # |a Computer Science (Springer-11645)