A Short Introduction to Intuitionistic Logic

Intuitionistic logic is presented here as part of familiar classical logic which allows mechanical extraction of programs from proofs. to make the material more accessible, basic techniques are presented first for propositional logic; Part II contains extensions to predicate logic. This material pro...

Full description

Bibliographic Details
Main Author: Mints, Grigori. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston, MA : Springer US, 2000.
Series:The University Series in Mathematics
Subjects:
Online Access:View fulltext via EzAccess
LEADER 03198nam a22004935i 4500
001 22586
003 DE-He213
005 20151030121049.0
007 cr nn 008mamaa
008 100301s2000 xxu| s |||| 0|eng d
020 # # |a 9780306469756  |9 978-0-306-46975-6 
024 7 # |a 10.1007/b115304  |2 doi 
050 # 4 |a QA8.9-10.3 
072 # 7 |a PBC  |2 bicssc 
072 # 7 |a PBCD  |2 bicssc 
072 # 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
100 1 # |a Mints, Grigori.  |e author. 
245 1 2 |a A Short Introduction to Intuitionistic Logic  |c by Grigori Mints.  |h [electronic resource] / 
264 # 1 |a Boston, MA :  |b Springer US,  |c 2000. 
300 # # |a IX, 131 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a The University Series in Mathematics 
505 0 # |a Intuitionistic Predicate Logic -- Natural Deduction System NJ -- Kripke Models for Predicate Logic -- Systems LJm, LJ -- Proof-Search in Predicate Logic -- Preliminaries -- Natural Deduction for Propositional Logic -- Negative Translation: GlivenkoỚ"s Theorem -- Program Interpretation of Intuitionistic Logic -- Computations with Deductions -- Coherence Theorem -- Kripke Models -- Gentzen-type Propositional System LJpm -- Topological Completeness -- Proof-search -- System LJp -- Interpolation Theorem. 
520 # # |a Intuitionistic logic is presented here as part of familiar classical logic which allows mechanical extraction of programs from proofs. to make the material more accessible, basic techniques are presented first for propositional logic; Part II contains extensions to predicate logic. This material provides an introduction and a safe background for reading research literature in logic and computer science as well as advanced monographs. Readers are assumed to be familiar with basic notions of first order logic. One device for making this book short was inventing new proofs of several theorems. The presentation is based on natural deduction. The topics include programming interpretation of intuitionistic logic by simply typed lambda-calculus (Curry-Howard isomorphism), negative translation of classical into intuitionistic logic, normalization of natural deductions, applications to category theory, Kripke models, algebraic and topological semantics, proof-search methods, interpolation theorem. The text developed from materal for several courses taught at Stanford University in 1992-1999. 
650 # 0 |a Mathematics. 
650 # 0 |a Logic. 
650 # 0 |a Computer science  |x Mathematics. 
650 # 0 |a Mathematical logic. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Logic. 
650 2 4 |a Mathematics of Computing. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780306463945 
830 # 0 |a The University Series in Mathematics 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b115304  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-BAE 
950 # # |a Mathematics and Statistics (Springer-11649)