A Practical Approach to Robustness Analysis with Aeronautical Applications

1. MOTIVATION In many physical situations, a plant model is often provided with a qualitative or quantitative measure of associated model uncertainties. On the one hand, the validity of the model is guaranteed only inside a frequency band, so that nearly nothing can be said about the behavior of the...

Full description

Bibliographic Details
Main Author: Ferreres, Gilles. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston, MA : Springer US, 1999.
Subjects:
Online Access:View fulltext via EzAccess
LEADER 03628nam a22005295i 4500
001 22584
003 DE-He213
005 20151204170811.0
007 cr nn 008mamaa
008 100301s1999 xxu| s |||| 0|eng d
020 # # |a 9780306469732  |9 978-0-306-46973-2 
024 7 # |a 10.1007/b116799  |2 doi 
050 # 4 |a Q295 
050 # 4 |a QA402.3-402.37 
072 # 7 |a GPFC  |2 bicssc 
072 # 7 |a SCI064000  |2 bisacsh 
072 # 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 # |a Ferreres, Gilles.  |e author. 
245 1 2 |a A Practical Approach to Robustness Analysis with Aeronautical Applications  |c by Gilles Ferreres.  |h [electronic resource] / 
264 # 1 |a Boston, MA :  |b Springer US,  |c 1999. 
300 # # |a XXVI, 206 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Preliminaries -- to ? and LFTs -- Applicative Examples -- Computation of a Standard LFT Structure -- Realization of Uncertain Systems Under an LFT Form -- Applications -- Applications -- Computation of ? Bounds -- Applications of the ? Tools -- Applications -- Skewed ? Problems in Robustness Analysis -- Computation of Skewed Bounds -- Application of the Skewed ? Tools -- Nonstandard Applications -- Robustness Analysis of Flexible Structures -- Robustness Analysis in the Presence of Time Delays -- Nonlinear Analysis in the Presence of Parametric Uncertainties. 
520 # # |a 1. MOTIVATION In many physical situations, a plant model is often provided with a qualitative or quantitative measure of associated model uncertainties. On the one hand, the validity of the model is guaranteed only inside a frequency band, so that nearly nothing can be said about the behavior of the real plant at high frequencies. On the other hand, if the model is derived on the basis of physical equations, it can be parameterized as a function of a few physical parameters, which are usually not perfectly known in practice. This is e.g. the case in aeronautical systems: as an example, the ae- dynamic model of an airplane is derived from the flight mechanics eq- tions. When synthesizing the aircraft control law, it is then necessary to take into account uncertainties in the values of the stability derivatives, which correspond to the physical coefficients of the aerodynamic model. Moreover, this airplane model does not perfectly represent the be- vior of the real aircraft. As a simple example, the flight control system or the autopilot are usually synthesized just using the aerodynamic model, thus without accounting for the flexible mechanicalstructure: the c- responding dynamics are indeed considered as high frequency neglected 1 dynamics, with respect to the dynamics of the rigid model . 
650 # 0 |a Mathematics. 
650 # 0 |a System theory. 
650 # 0 |a Calculus of variations. 
650 # 0 |a Mechanical engineering. 
650 # 0 |a Automotive engineering. 
650 # 0 |a Electrical engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Automotive Engineering. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Electrical Engineering. 
650 2 4 |a Mechanical Engineering. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780306462832 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b116799  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-BAE 
950 # # |a Mathematics and Statistics (Springer-11649)