Mathematical Problems and Proofs Combinatorics, Number Theory, and Geometry /

A gentle introduction to the highly sophisticated world of discrete mathematics, Mathematical Problems and Proofs presents topics ranging from elementary definitions and theorems to advanced topics -- such as cardinal numbers, generating functions, properties of Fibonacci numbers, and Euclidean algo...

Full description

Bibliographic Details
Main Author: Kisa♯<U+00fd>anin, Branislav. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston, MA : Springer US, 2002.
Subjects:
Online Access:View fulltext via EzAccess
LEADER 02626nam a22004695i 4500
001 22574
003 DE-He213
005 20151204141955.0
007 cr nn 008mamaa
008 100301s2002 xxu| s |||| 0|eng d
020 # # |a 9780306469633  |9 978-0-306-46963-3 
024 7 # |a 10.1007/b115295  |2 doi 
050 # 4 |a QA164-167.2 
072 # 7 |a PBV  |2 bicssc 
072 # 7 |a MAT036000  |2 bisacsh 
082 0 4 |a 511.6  |2 23 
100 1 # |a Kisa♯<U+00fd>anin, Branislav.  |e author. 
245 1 0 |a Mathematical Problems and Proofs  |b Combinatorics, Number Theory, and Geometry /  |c by Branislav Kisa♯<U+00fd>anin.  |h [electronic resource] : 
264 # 1 |a Boston, MA :  |b Springer US,  |c 2002. 
300 # # |a XV, 220 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Set Theory -- Combinatorics -- Number Theory -- Geometry. 
520 # # |a A gentle introduction to the highly sophisticated world of discrete mathematics, Mathematical Problems and Proofs presents topics ranging from elementary definitions and theorems to advanced topics -- such as cardinal numbers, generating functions, properties of Fibonacci numbers, and Euclidean algorithm. This excellent primer illustrates more than 150 solutions and proofs, thoroughly explained in clear language. The generous historical references and anecdotes interspersed throughout the text create interesting intermissions that will fuel readers' eagerness to inquire further about the topics and some of our greatest mathematicians. The author guides readers through the process of solving enigmatic proofs and problems, and assists them in making the transition from problem solving to theorem proving. At once a requisite text and an enjoyable read, Mathematical Problems and Proofs is an excellent entr©♭e to discrete mathematics for advanced students interested in mathematics, engineering, and science. 
650 # 0 |a Mathematics. 
650 # 0 |a Number theory. 
650 # 0 |a Combinatorics. 
650 # 0 |a Mathematics  |x Study and teaching. 
650 1 4 |a Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Mathematics, general. 
650 2 4 |a Mathematics Education. 
650 2 4 |a Number Theory. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780306459672 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b115295  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-BAE 
950 # # |a Mathematics and Statistics (Springer-11649)