Time series analysis : nonstationary and noninvertible distribution theory /

Bibliographic Details
Main Author: Tanaka, Katsuto, 1950- (Author)
Format: eBook
Language:English
Published: Hoboken, NJ : John Wiley & Sons, Inc., 2017.
Edition:Second edition.
Series:Wiley series in probability and statistics.
Subjects:
Online Access:View fulltext via EzAccess
LEADER 05396cam a2200625 i 4500
001 ocn962750334
003 OCoLC
005 20170527040629.1
006 m o d
007 cr |||||||||||
008 161114s2017 nju ob 001 0 eng
010 |a  2016052636 
040 |a DLC  |b eng  |e rda  |c DLC  |d OCLCO  |d OCLCF  |d OCLCQ  |d N$T  |d IDEBK  |d EBLCP  |d YDX  |d DG1  |d YDX  |d OCLCO  |d MERUC  |d UIU 
019 |a 981588475  |a 981647167  |a 981805415  |a 981881994 
020 |a 9781119132134  |q (electronic book) 
020 |a 1119132134  |q (electronic book) 
020 |z 9781119132110 
020 |z 1119132118 
020 |z 9781119132097  |q (cloth) 
020 |z 1119132096 
035 |a (OCoLC)962750334  |z (OCoLC)981588475  |z (OCoLC)981647167  |z (OCoLC)981805415  |z (OCoLC)981881994 
042 |a pcc 
050 1 0 |a QA280  |b .T35 2017 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 0 |a 519.5/5  |2 23 
049 |a MAIN 
100 1 |a Tanaka, Katsuto,  |d 1950-  |e author. 
245 1 0 |a Time series analysis :  |b nonstationary and noninvertible distribution theory /  |c Katsuto Tanaka. 
250 |a Second edition. 
264 1 |a Hoboken, NJ :  |b John Wiley & Sons, Inc.,  |c 2017. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b n  |2 rdamedia 
338 |a online resource  |b nc  |2 rdacarrier 
490 1 |a Wiley series in probability and statistics 
504 |a Includes bibliographical references and indexes. 
505 0 |a Cover; Title Page; Copyright; Contents; Preface to the Second Edition; Preface to the First Edition; Part I Analysis of Non Fractional Time Series; Chapter 1 Models for Nonstationarity and Noninvertibility; 1.1 Statistics from the One-Dimensional Random Walk; 1.1.1 Eigenvalue Approach; 1.1.2 Stochastic Process Approach; 1.1.3 The Fredholm Approach; 1.1.4 An Overview of the Three Approaches; 1.2 A Test Statistic from a Noninvertible Moving Average Model; 1.3 The AR Unit Root Distribution; 1.4 Various Statistics from the Two-Dimensional Random Walk; 1.5 Statistics from the Cointegrated Process 
505 8 |a 1.6 Panel Unit Root TestsChapter 2 Brownian Motion and Functional Central Limit Theorems; 2.1 The Space L2 of Stochastic Processes; 2.2 The Brownian Motion; 2.3 Mean Square Integration; 2.3.1 The Mean Square Riemann Integral; 2.3.2 The Mean Square Riemann-Stieltjes Integral; 2.3.3 The Mean Square Ito Integral; 2.4 The Ito Calculus; 2.5 Weak Convergence of Stochastic Processes; 2.6 The Functional Central Limit Theorem; 2.7 FCLT for Linear Processes; 2.8 FCLT for Martingale Differences; 2.9 Weak Convergence to the Integrated Brownian Motion 
505 8 |a 2.10 Weak Convergence to the Ornstein-Uhlenbeck Process2.11 Weak Convergence of Vector-Valued Stochastic Processes; 2.11.1 Space Cq; 2.11.2 Basic FCLT for Vector Processes; 2.11.3 FCLT for Martingale Differences; 2.11.4 FCLT for the Vector-Valued Integrated Brownian Motion; 2.12 Weak Convergence to the Ito Integral; Chapter 3 The Stochastic Process Approach; 3.1 Girsanov's Theorem: O-U Processes; 3.2 Girsanov's Theorem: Integrated Brownian Motion; 3.3 Girsanov's Theorem: Vector-Valued Brownian Motion; 3.4 The Cameron-Martin Formula; 3.5 Advantages and Disadvantages of the Present Approach 
505 8 |a Chapter 4 The Fredholm Approach4.1 Motivating Examples; 4.2 The Fredholm Theory: The Homogeneous Case; 4.3 The c.f. of the Quadratic Brownian Functional; 4.4 Various Fredholm Determinants; 4.5 The Fredholm Theory: The Nonhomogeneous Case; 4.5.1 Computation of the Resolvent-Case 1; 4.5.2 Computation of the Resolvent-Case 2; 4.6 Weak Convergence of Quadratic Forms; Chapter 5 Numerical Integration; 5.1 Introduction; 5.2 Numerical Integration: The Nonnegative Case; 5.3 Numerical Integration: The Oscillating Case; 5.4 Numerical Integration: The General Case; 5.5 Computation of Percent Points 
505 8 |a 5.6 The Saddlepoint ApproximationChapter 6 Estimation Problems in Nonstationary Autoregressive Models; 6.1 Nonstationary Autoregressive Models; 6.2 Convergence in Distribution of LSEs; 6.2.1 Model A; 6.2.2 Model B; 6.2.3 Model C; 6.2.4 Model D; 6.3 The c.f.s for the Limiting Distributions of LSEs; 6.3.1 The Fixed Initial Value Case; 6.3.2 The Stationary Case; 6.4 Tables and Figures of Limiting Distributions; 6.5 Approximations to the Distributions of the LSEs; 6.6 Nearly Nonstationary Seasonal AR Models; 6.7 Continuous Record Asymptotics; 6.8 Complex Roots on the Unit Circle 
526 0 |a CS241 - Bachelor of Science (Hons.) Statistics  |z Reference Materials 
588 |a Description based on online resource; title from digital title page (viewed on April 18, 2017). 
650 0 |a Time-series analysis. 
650 7 |a Time-series analysis.  |2 fast  |0 (OCoLC)fst01151190 
650 7 |a MATHEMATICS / Applied.  |2 bisacsh 
650 7 |a MATHEMATICS / Probability & Statistics / General.  |2 bisacsh 
655 4 |a Electronic books. 
720 1 |a Faculty Computer and Mathematical Sciences 
720 1 |a Siti Nurhafizah Mohd Shafie  |e Requestor 
776 0 8 |i Print version:  |a Tanaka, Katsuto, 1950-  |t Time series analysis.  |b Second edition.  |d Hoboken, NJ : John Wiley & Sons, Inc., [2017]  |z 9781119132097  |w (DLC) 2016052139 
830 0 |a Wiley series in probability and statistics. 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=https://doi.org/10.1002/9781119132165  |z View fulltext via EzAccess 
994 |a 92  |b DG1