Normally Hyperbolic Invariant Manifolds The Noncompact Case /

This monograph treats normally hyperbolic invariant manifolds, with a focus on noncompactness. These objects generalize hyperbolic fixed points and are ubiquitous in dynamical systems. First, normally hyperbolic invariant manifolds and their relation to hyperbolic fixed points and center manifolds,...

Full description

Bibliographic Details
Main Author: Eldering, Jaap. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Paris : Atlantis Press : Imprint: Atlantis Press, 2013.
Series:Atlantis Series in Dynamical Systems ; 2
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.2991/978-94-6239-003-4
LEADER 02731nam a22004575i 4500
001 17626
003 DE-He213
005 20130823034626.0
007 cr nn 008mamaa
008 130817s2013 fr | s |||| 0|eng d
020 # # |a 9789462390034  |9 978-94-6239-003-4 
024 7 # |a 10.2991/978-94-6239-003-4  |2 doi 
050 # 4 |a QA313 
072 # 7 |a PBWR  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 # |a Eldering, Jaap.  |e author. 
245 1 0 |a Normally Hyperbolic Invariant Manifolds  |b The Noncompact Case /  |c by Jaap Eldering.  |h [electronic resource] : 
264 # 1 |a Paris :  |b Atlantis Press :  |b Imprint: Atlantis Press,  |c 2013. 
300 # # |a XII, 189 p. 28 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Atlantis Series in Dynamical Systems ;  |v 2 
505 0 # |a Introduction -- Manifolds of bounded geometry -- Persistence of noncompact NHIMs -- Extension of results. 
520 # # |a This monograph treats normally hyperbolic invariant manifolds, with a focus on noncompactness. These objects generalize hyperbolic fixed points and are ubiquitous in dynamical systems. First, normally hyperbolic invariant manifolds and their relation to hyperbolic fixed points and center manifolds, as well as, overviews of history and methods of proofs are presented. Furthermore, issues (such as uniformity and bounded geometry) arising due to noncompactness are discussed in great detail with examples. The main new result shown is a proof of persistence for noncompact normally hyperbolic invariant manifolds in Riemannian manifolds of bounded geometry. This extends well-known results by Fenichel and Hirsch, Pugh and Shub, and is complementary to noncompactness results in Banach spaces by Bates, Lu and Zeng. Along the way, some new results in bounded geometry are obtained and a framework is developed to analyze ODEs in a differential geometric context. Finally, the main result is extended to time and parameter dependent systems and overflowing invariant manifolds. 
650 # 0 |a Mathematics. 
650 # 0 |a Differentiable dynamical systems. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Mathematics, general. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789462390027 
830 # 0 |a Atlantis Series in Dynamical Systems ;  |v 2 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.2991/978-94-6239-003-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)