The Argument of Mathematics

Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well,...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Aberdein, Andrew. (Editor), Dove, Ian J. (Editor)
Format: Electronic
Language:English
Published: Dordrecht : Springer Netherlands : Imprint: Springer, 2013.
Series:Logic, Epistemology, and the Unity of Science ; 30
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-94-007-6534-4
LEADER 04649nam a22004935i 4500
001 17448
003 DE-He213
005 20130727075612.0
007 cr nn 008mamaa
008 130703s2013 ne | s |||| 0|eng d
020 # # |a 9789400765344  |9 978-94-007-6534-4 
024 7 # |a 10.1007/978-94-007-6534-4  |2 doi 
050 # 4 |a BC1-199 
072 # 7 |a HPL  |2 bicssc 
072 # 7 |a PHI011000  |2 bisacsh 
082 0 4 |a 160  |2 23 
100 1 # |a Aberdein, Andrew.  |e editor. 
245 1 4 |a The Argument of Mathematics  |c edited by Andrew Aberdein, Ian J Dove.  |h [electronic resource] / 
264 # 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2013. 
300 # # |a X, 393 p. 74 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Logic, Epistemology, and the Unity of Science ;  |v 30 
505 0 # |a Introduction -- Part I. What are Mathematical Arguments? -- Chapter 1. Non-Deductive Logic in Mathematics: The Probability of Conjectures; James Franklin -- Chapter 2. Arguments, Proofs, and Dialogues; Erik C. W. Krabbe -- Chapter 3. Argumentation in Mathematics; Jess͠ Alcolea Banegas -- Chapter 4. Arguing Around Mathematical Proofs; Michel Dufour -- Part II. Argumentation as a Methodology for Studying Mathematical Practice -- Chapter 5. An Argumentative Approach to Ideal Elements in Mathematics; Paola Cant ̮-- Chapter 6. How Persuaded Are You? A Typology of Responses; Matthew Inglis and Juan Pablo Meja̕-Ramos -- Chapter 7. Revealing Structures of Argumentations in Classroom Proving Processes; Christine Knipping and David Reid -- Chapter 8. Checking Proofs; Jesse Alama and Reinhard Kahle -- Part III. Mathematics as a Testbed for Argumentation Theory -- Chapter 9. Dividing by Zero<U+0014>and Other Mathematical Fallacies; Lawrence H. Powers -- Chapter 10. Strategic Maneuvering in Mathematical Proofs; Erik C. W. Krabbe -- Chapter. 11 Analogical Arguments in Mathematics; Paul Bartha -- Chapter 12. What Philosophy of Mathematical Practice Can Teach Argumentation Theory about Diagrams and Pictures; Brendan Larvor -- Part IV. An Argumentational Turn in the Philosophy of Mathematics -- Chapter 13. Mathematics as the Art of Abstraction; Richard L. Epstein -- Chapter 14. Towards a Theory of Mathematical Argument; Ian J. Dove -- Chapter 15. Bridging the Gap Between Argumentation Theory and the Philosophy of Mathematics; Alison Pease, Alan Smaill, Simon Colton and John Lee -- Chapter 16. Mathematical Arguments and Distributed Knowledge; Patrick Allo, Jean Paul Van Bendegem and Bart Van Kerkhove -- Chapter 17. The Parallel Structure of Mathematical Reasoning; Andrew Aberdein -- Index. 
520 # # |a Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. The book begins by first challenging the assumption that there is no role for informal logic in mathematics. Next, it details the usefulness of argumentation theory in the understanding of mathematical practice, offering an impressively diverse set of examples, covering the history of mathematics, mathematics education and, perhaps surprisingly, formal proof verification. From there, the book demonstrates that mathematics also offers a valuable testbed for argumentation theory. Coverage concludes by defending attention to mathematical argumentation as the basis for new perspectives on the philosophy of mathematics.  
650 # 0 |a Philosophy (General). 
650 # 0 |a Logic. 
650 # 0 |a Computer science. 
650 # 0 |a Logic, Symbolic and mathematical. 
650 1 4 |a Philosophy. 
650 2 4 |a Logic. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Mathematical Logic and Formal Languages. 
700 1 # |a Dove, Ian J.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789400765337 
830 # 0 |a Logic, Epistemology, and the Unity of Science ;  |v 30 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-94-007-6534-4 
912 # # |a ZDB-2-SHU 
950 # # |a Humanities, Social Sciences and Law (Springer-11648)