Regularity of Optimal Transport Maps and Applications

In this thesis, we study the regularity of optimal transport maps and its applications to the semi-geostrophic system. The first two chapters survey the known theory, in particular there is a self-contained proof of Brenier theorem on existence of optimal transport maps and of Caffarellis Theorem...

Full description

Bibliographic Details
Main Author: Philippis, Guido. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Pisa : Scuola Normale Superiore : Imprint: Edizioni della Normale, 2013.
Series:Publications of the Scuola Normale Superiore ; 17
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-88-7642-458-8
LEADER 02536nam a22004695i 4500
001 16841
003 DE-He213
005 20130727081806.0
007 cr nn 008mamaa
008 130727s2013 it | s |||| 0|eng d
020 # # |a 9788876424588  |9 978-88-7642-458-8 
024 7 # |a 10.1007/978-88-7642-458-8  |2 doi 
050 # 4 |a QA315-316 
050 # 4 |a QA402.3 
050 # 4 |a QA402.5-QA402.6 
072 # 7 |a PBKQ  |2 bicssc 
072 # 7 |a PBU  |2 bicssc 
072 # 7 |a MAT005000  |2 bisacsh 
072 # 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 # |a Philippis, Guido.  |e author. 
245 1 0 |a Regularity of Optimal Transport Maps and Applications  |c by Guido Philippis.  |h [electronic resource] / 
264 # 1 |a Pisa :  |b Scuola Normale Superiore :  |b Imprint: Edizioni della Normale,  |c 2013. 
300 # # |a Approx. 190 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Publications of the Scuola Normale Superiore ;  |v 17 
520 # # |a In this thesis, we study the regularity of optimal transport maps and its applications to the semi-geostrophic system. The first two chapters survey the known theory, in particular there is a self-contained proof of Brenier theorem on existence of optimal transport maps and of Caffarelli s Theorem on Holder continuity of optimal maps. In the third and fourth chapter we start investigating Sobolev regularity of optimal transport maps, while in Chapter 5 we show how the above mentioned results allows to prove the existence of Eulerian solution to the semi-geostrophic equation. In Chapter 6 we prove partial regularity of optimal maps with respect to a generic cost functions (it is well known that in this case global regularity can not be expected). More precisely we show that if the target and source measure have smooth densities the optimal map is always smooth outside a closed set of measure zero. 
650 # 0 |a Mathematics. 
650 # 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788876424564 
830 # 0 |a Publications of the Scuola Normale Superiore ;  |v 17 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-88-7642-458-8 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)