Recommender Systems and the Social Web Leveraging Tagging Data for Recommender Systems /

There is an increasing demand for recommender systems due to the information overload users are facing on the Web. The goal of a recommender system is to provide personalized recommendations of products or services to users. With the advent of the Social Web, user-generated content has enriched the...

Full description

Bibliographic Details
Main Author: Gedikli, Fatih. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2013.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-658-01948-8
LEADER 03206nam a22004575i 4500
001 16507
003 DE-He213
005 20130727075826.0
007 cr nn 008mamaa
008 130330s2013 gw | s |||| 0|eng d
020 # # |a 9783658019488  |9 978-3-658-01948-8 
024 7 # |a 10.1007/978-3-658-01948-8  |2 doi 
050 # 4 |a QA76.9.D343 
072 # 7 |a UNF  |2 bicssc 
072 # 7 |a UYQE  |2 bicssc 
072 # 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 # |a Gedikli, Fatih.  |e author. 
245 1 0 |a Recommender Systems and the Social Web  |b Leveraging Tagging Data for Recommender Systems /  |c by Fatih Gedikli.  |h [electronic resource] : 
264 # 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Vieweg,  |c 2013. 
300 # # |a XI, 112 p. 29 illus., 14 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Recommender Systems -- Social Tagging -- Algorithms -- Explanations. 
520 # # |a There is an increasing demand for recommender systems due to the information overload users are facing on the Web. The goal of a recommender system is to provide personalized recommendations of products or services to users. With the advent of the Social Web, user-generated content has enriched the social dimension of the Web. As user-provided content data also tells us something about the user, one can learn the user<U+0019>s individual preferences from the Social Web. This opens up completely new opportunities and challenges for recommender systems research. Fatih Gedikli deals with the question of how user-provided tagging data can be used to build better recommender systems. A tag recommender algorithm is proposed which recommends tags for users to annotate their favorite online resources. The author also proposes algorithms which exploit the user-provided tagging data and produce more accurate recommendations. On the basis of this idea, he shows how tags can be used to explain to the user the automatically generated recommendations in a clear and intuitively understandable form. With his book, Fatih Gedikli gives us an outlook on the next generation of recommendation systems in the Social Web sphere. Contents - Recommender Systems - Social Tagging - Algorithms - Explanations Target Groups ʺ Researchers and students of computer science ʺ Computer and web programmers The Author Dr. Fatih Gedikli is a research assistant in computer science at TU Dortmund, Germany. 
650 # 0 |a Computer science. 
650 # 0 |a Data mining. 
650 # 0 |a Information storage and retrieval systems. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a User Interfaces and Human Computer Interaction. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658019471 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-658-01948-8 
912 # # |a ZDB-2-SCS 
950 # # |a Computer Science (Springer-11645)