Telegraph Processes and Option Pricing

The telegraph process is a useful mathematical model for describing the stochastic motion of a particle that moves with finite speed on the real line and alternates between two possible directions of motion at random time instants. That is why it can be considered as the finite-velocity counterpart...

Full description

Bibliographic Details
Main Authors: Kolesnik, Alexander D. (Author), Ratanov, Nikita. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:SpringerBriefs in Statistics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-40526-6
LEADER 02428nam a22004335i 4500
001 16308
003 DE-He213
005 20131020062857.0
007 cr nn 008mamaa
008 131017s2013 gw | s |||| 0|eng d
020 # # |a 9783642405266  |9 978-3-642-40526-6 
024 7 # |a 10.1007/978-3-642-40526-6  |2 doi 
050 # 4 |a QA276-280 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 # |a Kolesnik, Alexander D.  |e author. 
245 1 0 |a Telegraph Processes and Option Pricing  |c by Alexander D. Kolesnik, Nikita Ratanov.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XII, 128 p. 5 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a SpringerBriefs in Statistics,  |x 2191-544X 
505 0 # |a Preface -- 1.Preliminaries -- 2.Telegraph Process on the Line -- 3.Functionals of Telegraph Process -- 4.Asymmetric Jump-Telegraph Processes -- 5.Financial Modelling and Option Pricing -- Index. �. 
520 # # |a The telegraph process is a useful mathematical model for describing the stochastic motion of a particle that moves with finite speed on the real line and alternates between two possible directions of motion at random time instants. That is why it can be considered as the finite-velocity counterpart of the classical Einstein-Smoluchowski's model of the Brownian motion in which the infinite speed of motion and the infinite intensity of the alternating directions are assumed. The book will be interesting to specialists in the area of diffusion processes with finite speed of propagation and in financial modelling. It will also be useful for students and postgraduates who are taking their first steps in these intriguing and attractive fields. 
650 # 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics, general. 
700 1 # |a Ratanov, Nikita.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642405259 
830 # 0 |a SpringerBriefs in Statistics,  |x 2191-544X 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-40526-6 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)