Unobserved Variables Models and Misunderstandings /

The classical statistical problem typically involves a probability distribution which depends on a number of unknown parameters. The form of the distribution may be known, partially or completely, and inferences have to be made on the basis of a sample of observations drawn from the distribution; of...

Full description

Bibliographic Details
Main Author: Bartholomew, David J. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:SpringerBriefs in Statistics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-39912-1
LEADER 02719nam a22004215i 4500
001 16228
003 DE-He213
005 20130913030608.0
007 cr nn 008mamaa
008 130907s2013 gw | s |||| 0|eng d
020 # # |a 9783642399121  |9 978-3-642-39912-1 
024 7 # |a 10.1007/978-3-642-39912-1  |2 doi 
050 # 4 |a QA276-280 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 # |a Bartholomew, David J.  |e author. 
245 1 0 |a Unobserved Variables  |b Models and Misunderstandings /  |c by David J. Bartholomew.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a VII, 86 p. 5 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a SpringerBriefs in Statistics,  |x 2191-544X 
505 0 # |a 1.Unobserved Variables -- 2.Measurement, Estimation and Prediction -- 3.Simple Mixtures -- 4.Models for Ability -- 5.A General Latent Variable Model -- 6.Prediction of Latent Variables -- 7.Identifiability -- 8.Categorical Variables -- 9.Models for Time Series -- 10.Missing Data -- 11.Social Measurement -- 12.Bayesian and Computational Methods -- 13.Unity and Diversity. 
520 # # |a The classical statistical problem typically involves a probability distribution which depends on a number of unknown parameters. The form of the distribution may be known, partially or completely, and inferences have to be made on the basis of a sample of observations drawn from the distribution; often, but not necessarily, a random sample. This brief deals with problems where some of the sample members are either unobserved or hypothetical, the latter category being introduced as a means of better explaining the data. Sometimes we are interested in these kinds of variable themselves and sometimes in the parameters of the distribution. Many problems that can be cast into this form are treated. These include: missing data, mixtures, latent variables, time series and social measurement problems. Although all can be accommodated within a Bayesian framework, most are best treated from first principles. 
650 # 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics, general. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642399114 
830 # 0 |a SpringerBriefs in Statistics,  |x 2191-544X 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-39912-1 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)