Stochastic Simulation and Monte Carlo Methods Mathematical Foundations of Stochastic Simulation /

In various scientific and industrial fields, stochastic simulations are taking on a new importance. This is due to the increasing power of computers and practitioners<U+0019> aim to simulate more and more complex systems, and thus use random parameters as well as random noises to model the par...

Full description

Bibliographic Details
Main Authors: Graham, Carl. (Author), Talay, Denis. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Stochastic Modelling and Applied Probability, 68
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-39363-1
LEADER 04379nam a22005175i 4500
001 16162
003 DE-He213
005 20130727082739.0
007 cr nn 008mamaa
008 130716s2013 gw | s |||| 0|eng d
020 # # |a 9783642393631  |9 978-3-642-39363-1 
024 7 # |a 10.1007/978-3-642-39363-1  |2 doi 
050 # 4 |a QA273.A1-274.9 
050 # 4 |a QA274-274.9 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a PBWL  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 # |a Graham, Carl.  |e author. 
245 1 0 |a Stochastic Simulation and Monte Carlo Methods  |b Mathematical Foundations of Stochastic Simulation /  |c by Carl Graham, Denis Talay.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XVI, 260 p. 4 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Stochastic Modelling and Applied Probability,  |v 68  |x 0172-4568 ; 
505 0 # |a Part I:Principles of Monte Carlo Methods -- 1.Introduction -- 2.Strong Law of Large Numbers and Monte Carlo Methods -- 3.Non Asymptotic Error Estimates for Monte Carlo Methods -- Part II:Exact and Approximate Simulation of Markov Processes -- 4.Poisson Processes -- 5.Discrete-Space Markov Processes -- 6.Continuous-Space Markov Processes with Jumps -- 7.Discretization of Stochastic Differential Equations -- Part III:Variance Reduction, Girsanov<U+0019>s Theorem, and Stochastic Algorithms -- 8.Variance Reduction and Stochastic Differential Equations -- 9.Stochastic Algorithms -- References -- Index. 
520 # # |a In various scientific and industrial fields, stochastic simulations are taking on a new importance. This is due to the increasing power of computers and practitioners<U+0019> aim to simulate more and more complex systems, and thus use random parameters as well as random noises to model the parametric uncertainties and the lack of knowledge on the physics of these systems. The error analysis of these computations is a highly complex mathematical undertaking. Approaching these issues, the authors present stochastic numerical methods and prove accurate convergence rate estimates in terms of their numerical parameters (number of simulations, time discretization steps). As a result, the book is a self-contained and rigorous study of the numerical methods within a theoretical framework. After briefly reviewing the basics, the authors first introduce fundamental notions in stochastic calculus and continuous-time martingale theory, then develop the analysis of pure-jump Markov processes, Poisson processes, and stochastic differential equations. In particular, they review the essential properties of It ̥integrals and prove fundamental results on the probabilistic analysis of parabolic partial differential equations. These results in turn provide the basis for developing stochastic numerical methods, both from an algorithmic and theoretical point of view. The book combines advanced mathematical tools, theoretical analysis of stochastic numerical methods, and practical issues at a high level, so as to provide optimal results on the accuracy of Monte Carlo simulations of stochastic processes. It is intended for master and Ph.D. students in the field of stochastic processes and their numerical applications, as well as for physicists, biologists, economists and other professionals working with stochastic simulations, who will benefit from the ability to reliably estimate and control the accuracy of their simulations.  
650 # 0 |a Mathematics. 
650 # 0 |a Finance. 
650 # 0 |a Numerical analysis. 
650 # 0 |a Distribution (Probability theory). 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Quantitative Finance. 
700 1 # |a Talay, Denis.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642393624 
830 # 0 |a Stochastic Modelling and Applied Probability,  |v 68  |x 0172-4568 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-39363-1 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)