Random Matrices and Iterated Random Functions M<U+00fc>nster, October 2011 /

Random Matrices are one of the major research areas in modern probability theory, due to their prominence in many different fields such as nuclear physics, statistics, telecommunication, free probability, non-commutative geometry, and dynamical systems. A great deal of recent work has focused on the...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Alsmeyer, Gerold. (Editor), Lw̲e, Matthias. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Springer Proceedings in Mathematics & Statistics, 53
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-38806-4
LEADER 04185nam a22004935i 4500
001 16049
003 DE-He213
005 20130902224024.0
007 cr nn 008mamaa
008 130827s2013 gw | s |||| 0|eng d
020 # # |a 9783642388064  |9 978-3-642-38806-4 
024 7 # |a 10.1007/978-3-642-38806-4  |2 doi 
050 # 4 |a QA273.A1-274.9 
050 # 4 |a QA274-274.9 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a PBWL  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 # |a Alsmeyer, Gerold.  |e editor. 
245 1 0 |a Random Matrices and Iterated Random Functions  |b M<U+00fc>nster, October 2011 /  |c edited by Gerold Alsmeyer, Matthias Lw̲e.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a VIII, 265 p. 24 illus., 15 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Proceedings in Mathematics & Statistics,  |v 53  |x 2194-1009 ; 
505 0 # |a E. Le Page: Tails of a stationary probability measure for an affine stochastic recursion on the line -- Yv. Guivarc<U+0019>h: On homogeneity at infinity of stationary measures for affine stochastic recursions -- M. Stolz: Limit theorems for random elements of the compact classical groups -- T. Kriecherbauer: Universality of local eigenvalue statistics -- R. Speicher: Asymptotic eigenvalue distribution of random matrices and free stochastic analysis -- M. Peign:̌ Conditioned random walk in Weyl chambers and renewal theory in a cone -- D. Buraczewski: The linear stochastic equation R =_d sum_{ i=1}^N A_iR_i + B in the critical case -- J. Collamore: Tail estimates for stochastic fixed point equations -- S. Mentemeier: On multivariate random difference equations -- M. Olvera-Cravioto: Tail asymptotics for solutions of stochastic fixed point equations on trees -- E. Damek: On fixed points of generalized multidimensional affine recursions -- G. Alsmeyer: The functional equation of the smoothing transform.<U+0013> O. Friesen, M. Lw̲e: Limit theorems for the eigenvalues of random matrices with weakly correlated entries. . 
520 # # |a Random Matrices are one of the major research areas in modern probability theory, due to their prominence in many different fields such as nuclear physics, statistics, telecommunication, free probability, non-commutative geometry, and dynamical systems. A great deal of recent work has focused on the study of spectra of large random matrices on the one hand and on iterated random functions, especially random difference equations, on the other. However, the methods applied in these two research areas are fairly dissimilar. Motivated by the idea that tools from one area could potentially also be helpful in the other, the volume editors have selected contributions that present results and methods from random matrix theory as well as from the theory of iterated random functions. This work resulted from a workshop that was held in M<U+00fc>nster, Germany in 2011. The aim of the workshop was to bring together researchers from two fields of probability theory: random matrix theory and the theory of iterated random functions. Random matrices play fundamental, yet very different roles in the two fields. Accordingly, leading figures and young researchers gave talks on their field of interest that were also accessible to a broad audience. 
650 # 0 |a Mathematics. 
650 # 0 |a Functional analysis. 
650 # 0 |a Distribution (Probability theory). 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Functional Analysis. 
700 1 # |a Lw̲e, Matthias.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642388057 
830 # 0 |a Springer Proceedings in Mathematics & Statistics,  |v 53  |x 2194-1009 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-38806-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)