Dimensionality Reduction with Unsupervised Nearest Neighbors

This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach. It starts with an introduction to machine learning concepts and a real-world application from the energy domain. Then, unsuperv...

Full description

Bibliographic Details
Main Author: Kramer, Oliver. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Intelligent Systems Reference Library, 51
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-38652-7
LEADER 02940nam a22004935i 4500
001 16023
003 DE-He213
005 20130727081856.0
007 cr nn 008mamaa
008 130531s2013 gw | s |||| 0|eng d
020 # # |a 9783642386527  |9 978-3-642-38652-7 
024 7 # |a 10.1007/978-3-642-38652-7  |2 doi 
050 # 4 |a TA329-348 
050 # 4 |a TA640-643 
072 # 7 |a TBJ  |2 bicssc 
072 # 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 # |a Kramer, Oliver.  |e author. 
245 1 0 |a Dimensionality Reduction with Unsupervised Nearest Neighbors  |c by Oliver Kramer.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XII, 132 p. 48 illus., 45 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Intelligent Systems Reference Library,  |v 51  |x 1868-4394 ; 
505 0 # |a Part I Foundations -- Part II Unsupervised Nearest Neighbors -- Part III Conclusions. 
520 # # |a This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach. It starts with an introduction to machine learning concepts and a real-world application from the energy domain. Then, unsupervised nearest neighbors (UNN) is introduced as efficient iterative method for dimensionality reduction. Various UNN models are developed step by step, reaching from a simple iterative strategy for discrete latent spaces to a stochastic kernel-based algorithm for learning submanifolds with independent parameterizations. Extensions that allow the embedding of incomplete and noisy patterns are introduced. Various optimization approaches are compared, from evolutionary to swarm-based heuristics. Experimental comparisons to related methodologies taking into account artificial test data sets and also real-world data demonstrate the behavior of UNN in practical scenarios. The book contains numerous color figures to illustrate the introduced concepts and to highlight the experimental results. � 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 # 0 |a Engineering mathematics. 
650 # 0 |a Operations research. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Operation Research/Decision Theory. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642386510 
830 # 0 |a Intelligent Systems Reference Library,  |v 51  |x 1868-4394 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-38652-7 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)