Application of Integrable Systems to Phase Transitions

The eigenvalue densities in various matrix models in quantum chromodynamics (QCD) are ultimately unified in this book by a unified model derived from the integrable systems. Many new density models and free energy functions are consequently solved and presented. The phase transition models including...

Full description

Bibliographic Details
Main Author: Wang, C.B. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-38565-0
LEADER 02576nam a22004335i 4500
001 16004
003 DE-He213
005 20130727081839.0
007 cr nn 008mamaa
008 130719s2013 gw | s |||| 0|eng d
020 # # |a 9783642385650  |9 978-3-642-38565-0 
024 7 # |a 10.1007/978-3-642-38565-0  |2 doi 
050 # 4 |a QC19.2-20.85 
072 # 7 |a PBWH  |2 bicssc 
072 # 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 # |a Wang, C.B.  |e author. 
245 1 0 |a Application of Integrable Systems to Phase Transitions  |c by C.B. Wang.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a X, 219 p. 10 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Introduction -- Densities in Hermitian Matrix Models -- Bifurcation Transitions and Expansions -- Large-N Transitions and Critical Phenomena -- Densities in Unitary Matrix Models -- Transitions in the Unitary Matrix Models -- Marcenko-Pastur Distribution and McKay s Law. 
520 # # |a The eigenvalue densities in various matrix models in quantum chromodynamics (QCD) are ultimately unified in this book by a unified model derived from the integrable systems. Many new density models and free energy functions are consequently solved and presented. The phase transition models including critical phenomena with fractional power-law for the discontinuities of the free energies in the matrix models are systematically classified by means of a clear and rigorous mathematical demonstration. The methods here will stimulate new research directions such as the important Seiberg-Witten differential in Seiberg-Witten theory for solving the mass gap problem in quantum Yang-Mills theory. The formulations and results will benefit researchers and students in the fields of phase transitions, integrable systems, matrix models and Seiberg-Witten theory. 
650 # 0 |a Mathematics. 
650 # 0 |a Functions, special. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Special Functions. 
650 2 4 |a Mathematical Physics. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642385643 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-38565-0 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)