Method of Guiding Functions in Problems of Nonlinear Analysis

This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of non...

Full description

Bibliographic Details
Main Authors: Obukhovskii, Valeri. (Author), Zecca, Pietro. (Author), Van Loi, Nguyen. (Author), Kornev, Sergei. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Lecture Notes in Mathematics, 2076
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-37070-0
LEADER 02769nam a22005295i 4500
001 15746
003 DE-He213
005 20130727075725.0
007 cr nn 008mamaa
008 130514s2013 gw | s |||| 0|eng d
020 # # |a 9783642370700  |9 978-3-642-37070-0 
024 7 # |a 10.1007/978-3-642-37070-0  |2 doi 
050 # 4 |a QA1-939 
072 # 7 |a PB  |2 bicssc 
072 # 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 # |a Obukhovskii, Valeri.  |e author. 
245 1 0 |a Method of Guiding Functions in Problems of Nonlinear Analysis  |c by Valeri Obukhovskii, Pietro Zecca, Nguyen Van Loi, Sergei Kornev.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XIII, 177 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 2076  |x 0075-8434 ; 
505 0 # |a 1�Background -- 2 MGF in Finite-Dimensional Spaces -- 3 Guiding Functions in Hilbert Spaces.-�4 Second-Order Differential Inclusions.-�5 Nonlinear Fredholm Inclusions. 
520 # # |a This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of nonlinear and multivalued analysis, describes the classical aspects of the method of guiding functions, and then presents recent findings only available in the research literature. It describes essential applications in control theory, the theory of bifurcations, and physics, making it a valuable resource not only for pure mathematicians, but also for students and researchers working in applied mathematics, the engineering sciences and physics. 
650 # 0 |a Mathematics. 
650 # 0 |a Operator theory. 
650 # 0 |a Systems theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
650 2 4 |a Operator Theory. 
650 2 4 |a Game Theory, Economics, Social and Behav. Sciences. 
650 2 4 |a Systems Theory, Control. 
700 1 # |a Zecca, Pietro.  |e author. 
700 1 # |a Van Loi, Nguyen.  |e author. 
700 1 # |a Kornev, Sergei.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642370694 
830 # 0 |a Lecture Notes in Mathematics,  |v 2076  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-37070-0 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)