Business Intelligence Second European Summer School, eBISS 2012, Brussels, Belgium, July 15-21, 2012, Tutorial Lectures /

To large organizations, business intelligence (BI) promises the capability of collecting and analyzing internal and external data to generate knowledge and value, thus providing decision support at the strategic, tactical, and operational levels. BI is now impacted by the <U+001c>Big Data phe...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Aufaure, Marie-Aude. (Editor), Zimǹyi, Esteban. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Lecture Notes in Business Information Processing, 138
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-36318-4
LEADER 04432nam a22005895i 4500
001 15570
003 DE-He213
005 20130727075253.0
007 cr nn 008mamaa
008 130125s2013 gw | s |||| 0|eng d
020 # # |a 9783642363184  |9 978-3-642-36318-4 
024 7 # |a 10.1007/978-3-642-36318-4  |2 doi 
050 # 4 |a HF54.5-54.56 
072 # 7 |a KJQ  |2 bicssc 
072 # 7 |a UF  |2 bicssc 
072 # 7 |a BUS083000  |2 bisacsh 
072 # 7 |a COM039000  |2 bisacsh 
082 0 4 |a 650  |2 23 
100 1 # |a Aufaure, Marie-Aude.  |e editor. 
245 1 0 |a Business Intelligence  |b Second European Summer School, eBISS 2012, Brussels, Belgium, July 15-21, 2012, Tutorial Lectures /  |c edited by Marie-Aude Aufaure, Esteban Zimǹyi.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a X, 235 p. 83 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Business Information Processing,  |v 138  |x 1865-1348 ; 
505 0 # |a Managing Complex Multidimensional Data -- An Introduction to Business Process Modeling -- Machine Learning Strategies for Time Series Forecasting -- Knowledge Discovery from Constrained Relational Data: A Tutorial on Markov Logic Networks -- Large Graph Mining: Recent Developments, Challenges and Potential Solutions -- Big Data Analytics on Modern Hardware Architectures: A Technology Survey -- An Introduction to Multicriteria Decision Aid: The PROMETHEE and GAIA Methods -- Knowledge Harvesting for Business Intelligence -- Business Semantics as an Interface between Enterprise Information Management and the Web of Data: A Case Study in the Flemish Public Administration. 
520 # # |a To large organizations, business intelligence (BI) promises the capability of collecting and analyzing internal and external data to generate knowledge and value, thus providing decision support at the strategic, tactical, and operational levels. BI is now impacted by the <U+001c>Big Data phenomena and the evolution of society and users. In particular, BI applications must cope with additional heterogeneous (often Web-based) sources, e.g., from social networks, blogs, competitors<U+0019>, suppliers<U+0019>, or distributors<U+0019> data, governmental or NGO-based analysis and papers, or from research publications. In addition, they must be able to provide their results also on mobile devices, taking into account location-based or time-based environmental data. The lectures held at the Second European Business Intelligence Summer School (eBISS), which are presented here in an extended and refined format, cover not only established BI and BPM technologies, but extend into innovative aspects that are important in this new environment and for novel applications, e.g., machine learning, logic networks, graph mining, business semantics, large-scale data management and analysis, and multicriteria and collaborative decision making. Combining papers by leading researchers in the field, this volume equips the reader with the state-of-the-art background necessary for creating the future of BI. It also provides the reader with an excellent basis and many pointers for further research in this growing field. 
650 # 0 |a Economics. 
650 # 0 |a Computational complexity. 
650 # 0 |a Computer science. 
650 # 0 |a Database management. 
650 # 0 |a Information storage and retrieval systems. 
650 # 0 |a Information systems. 
650 # 0 |a Management information systems. 
650 1 4 |a Economics/Management Science. 
650 2 4 |a Business Information Systems. 
650 2 4 |a Computer Appl. in Administrative Data Processing. 
650 2 4 |a Database Management. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Probability and Statistics in Computer Science. 
700 1 # |a Zimǹyi, Esteban.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642363177 
830 # 0 |a Lecture Notes in Business Information Processing,  |v 138  |x 1865-1348 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-36318-4 
912 # # |a ZDB-2-SCS 
950 # # |a Computer Science (Springer-11645)