Real Algebraic Geometry

This book is concerned with one of the most fundamental questions of mathematics: the relationship between algebraic formulas and geometric images. At one of the first international mathematical congresses (in Paris in 1900), Hilbert stated a special case of this question in the form of his 16th pro...

Full description

Bibliographic Details
Main Author: Arnold, Vladimir I. (Author)
Corporate Author: SpringerLink (Online service)
Other Authors: Itenberg, Ilia. (Editor), Kharlamov, Viatcheslav. (Editor), Shustin, Eugenii I. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:UNITEXT, 66
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-36243-9
LEADER 02778nam a22005295i 4500
001 15549
003 DE-He213
005 20130727075231.0
007 cr nn 008mamaa
008 130417s2013 gw | s |||| 0|eng d
020 # # |a 9783642362439  |9 978-3-642-36243-9 
024 7 # |a 10.1007/978-3-642-36243-9  |2 doi 
050 # 4 |a QA564-609 
072 # 7 |a PBMW  |2 bicssc 
072 # 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 # |a Arnold, Vladimir I.  |e author. 
245 1 0 |a Real Algebraic Geometry  |c by Vladimir I. Arnold ; edited by Ilia Itenberg, Viatcheslav Kharlamov, Eugenii I. Shustin.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a IX, 100 p. 126 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a UNITEXT,  |v 66  |x 2038-5714 ; 
505 0 # |a Publisher's Foreword -- Editors' Foreword -- Introduction -- 2 Geometry of Conic Sections -- 3 The Physics of Conic Sections and Ellipsoids -- 4 Projective Geometry -- 5 Complex Algebraic Curves -- 6 A Problem for School Pupils -- A Into How Many Parts do n Lines Divide the Plane?- Editors' Comments on Gudkov's Conjecture -- Notes. 
520 # # |a This book is concerned with one of the most fundamental questions of mathematics: the relationship between algebraic formulas and geometric images. At one of the first international mathematical congresses (in Paris in 1900), Hilbert stated a special case of this question in the form of his 16th problem (from his list of 23 problems left over from the nineteenth century as a legacy for the twentieth century). In spite of the simplicity and importance of this problem (including its numerous applications), it remains unsolved to this day (although, as you will now see, many remarkable results have been discovered). 
650 # 0 |a Mathematics. 
650 # 0 |a Geometry, algebraic. 
650 # 0 |a Geometry. 
650 # 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Geometry. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
700 1 # |a Itenberg, Ilia.  |e editor. 
700 1 # |a Kharlamov, Viatcheslav.  |e editor. 
700 1 # |a Shustin, Eugenii I.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642362422 
830 # 0 |a UNITEXT,  |v 66  |x 2038-5714 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-36243-9 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)