Clifford Algebras and Lie Theory

This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin gro...

Full description

Bibliographic Details
Main Author: Meinrenken, Eckhard. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, 58
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-36216-3
LEADER 03962nam a22005415i 4500
001 15541
003 DE-He213
005 20130727075223.0
007 cr nn 008mamaa
008 130228s2013 gw | s |||| 0|eng d
020 # # |a 9783642362163  |9 978-3-642-36216-3 
024 7 # |a 10.1007/978-3-642-36216-3  |2 doi 
050 # 4 |a QA252.3 
050 # 4 |a QA387 
072 # 7 |a PBG  |2 bicssc 
072 # 7 |a MAT014000  |2 bisacsh 
072 # 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 # |a Meinrenken, Eckhard.  |e author. 
245 1 0 |a Clifford Algebras and Lie Theory  |c by Eckhard Meinrenken.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XX, 321 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,  |v 58  |x 0071-1136 ; 
505 0 # |a Preface -- Conventions -- List of Symbols -- 1 Symmetric bilinear forms -- 2 Clifford algebras -- 3 The spin representation -- 4 Covariant and contravariant spinors -- 5 Enveloping algebras -- 6 Weil algebras -- 7 Quantum Weil algebras -- 8 Applications to reductive Lie algebras -- 9 D(g; k) as a geometric Dirac operator -- 10 The Hopf<U+0013>Koszul<U+0013>Samelson Theorem -- 11 The Clifford algebra of a reductive Lie algebra -- A Graded and filtered super spaces -- B Reductive Lie algebras -- C Background on Lie groups -- References -- Index. 
520 # # |a This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan<U+0019>s famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci<U+0019>s proof of the PoincařBirkhoff<U+0013>Witt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo<U+0019>s theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant<U+0019>s structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his <U+001c>Clifford algebra analogue of the Hopf<U+0013>Koszul<U+0013>Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics. 
650 # 0 |a Mathematics. 
650 # 0 |a Algebra. 
650 # 0 |a Topological Groups. 
650 # 0 |a Global differential geometry. 
650 # 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Associative Rings and Algebras. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642362156 
830 # 0 |a Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,  |v 58  |x 0071-1136 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-36216-3 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)