Stability to the Incompressible Navier-Stokes Equations

This thesis contains results of Dr. Guilong Gui during his PhD period with the aim to understand incompressible Navier-Stokes equations. It is devoted to the study of the stability to the incompressible Navier-Stokes equations. There is great potential for further theoretical and numerical research...

Full description

Bibliographic Details
Main Author: Gui, Guilong. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Springer Theses, Recognizing Outstanding Ph.D. Research,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-36028-2
LEADER 02521nam a22004335i 4500
001 15497
003 DE-He213
005 20130727075104.0
007 cr nn 008mamaa
008 130413s2013 gw | s |||| 0|eng d
020 # # |a 9783642360282  |9 978-3-642-36028-2 
024 7 # |a 10.1007/978-3-642-36028-2  |2 doi 
050 # 4 |a QA370-380 
072 # 7 |a PBKJ  |2 bicssc 
072 # 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 # |a Gui, Guilong.  |e author. 
245 1 0 |a Stability to the Incompressible Navier-Stokes Equations  |c by Guilong Gui.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XII, 162 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 # |a Introduction -- Stability to the global large solutions of the Navier-Stokes equations -- Global Smooth Solutions to the 2-D inhomogeneous Navier-Stokes Equations with Variable Viscosity -- On the decay and stability to global solutions of the 3-D inhomogeneous Navier-Stokes equations. 
520 # # |a This thesis contains results of Dr. Guilong Gui during his PhD period with the aim to understand incompressible Navier-Stokes equations. It is devoted to the study of the stability to the incompressible Navier-Stokes equations. There is great potential for further theoretical and numerical research in this field. The techniques developed in carrying out this work are expected to be useful for other physical model equations. It is also hopeful that the thesis could serve as a valuable reference on current developments in research topics related to the incompressible Navier-Stokes equations. It was nominated by the Graduate University of Chinese Academy of Sciences as an outstanding Ph.D. thesis. 
650 # 0 |a Mathematics. 
650 # 0 |a Differential equations, partial. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642360275 
830 # 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-36028-2 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)