Nonabelian Jacobian of Projective Surfaces Geometry and Representation Theory /

The Jacobian of a smooth projective curve is undoubtedly one of the most remarkable and beautiful objects in algebraic geometry. This work is an attempt to develop an analogous theory for smooth projective surfaces - a theory of the nonabelian Jacobian of smooth projective surfaces. Just like its cl...

Full description

Bibliographic Details
Main Author: Reider, Igor. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Lecture Notes in Mathematics, 2072
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-35662-9
LEADER 03265nam a22004695i 4500
001 15420
003 DE-He213
005 20130727074919.0
007 cr nn 008mamaa
008 130305s2013 gw | s |||| 0|eng d
020 # # |a 9783642356629  |9 978-3-642-35662-9 
024 7 # |a 10.1007/978-3-642-35662-9  |2 doi 
050 # 4 |a QA564-609 
072 # 7 |a PBMW  |2 bicssc 
072 # 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 # |a Reider, Igor.  |e author. 
245 1 0 |a Nonabelian Jacobian of Projective Surfaces  |b Geometry and Representation Theory /  |c by Igor Reider.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a VIII, 227 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 2072  |x 0075-8434 ; 
505 0 # |a 1 Introduction -- 2 Nonabelian Jacobian J(X; L; d): main properties -- 3 Some properties of the filtration H -- 4 The sheaf of Lie algebras G -- 5 Period maps and Torelli problems -- 6 sl2-structures on F -- 7 sl2-structures on G -- 8 Involution on G -- 9 Stratification of T -- 10 Configurations and theirs equations -- 11 Representation theoretic constructions -- 12 J(X; L; d) and the Langlands Duality. 
520 # # |a The Jacobian of a smooth projective curve is undoubtedly one of the most remarkable and beautiful objects in algebraic geometry. This work is an attempt to develop an analogous theory for smooth projective surfaces - a theory of the nonabelian Jacobian of smooth projective surfaces. Just like its classical counterpart, our nonabelian Jacobian relates to vector bundles (of rank 2) on a surface as well as its Hilbert scheme of points. But it also comes equipped with the variation of Hodge-like structures, which produces a sheaf of reductive Lie algebras naturally attached to our Jacobian. This constitutes a nonabelian analogue of the (abelian) Lie algebra structure of the classical Jacobian. This feature naturally relates geometry of surfaces with the representation theory of reductive Lie algebras/groups. This work s main focus is on providing an in-depth study of various aspects of this relation. It presents a substantial body of evidence that the sheaf of Lie algebras on the nonabelian Jacobian is an efficient tool for using the representation theory to systematically address various algebro-geometric problems. It also shows how to construct new invariants�of representation theoretic origin on smooth projective surfaces. 
650 # 0 |a Mathematics. 
650 # 0 |a Geometry, algebraic. 
650 # 0 |a Matrix theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642356612 
830 # 0 |a Lecture Notes in Mathematics,  |v 2072  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-35662-9 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)