A Heuristic Approach to Possibilistic Clustering: Algorithms and Applications

The present book outlines a new approach to possibilistic clustering in which the sought clustering structure of the set of objects is based directly on the formal definition of fuzzy cluster and the possibilistic memberships are determined directly from the values of the pairwise similarity of obje...

Full description

Bibliographic Details
Main Author: Viattchenin, Dmitri A. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Studies in Fuzziness and Soft Computing, 297
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-35536-3
LEADER 03005nam a22004695i 4500
001 15399
003 DE-He213
005 20130727074842.0
007 cr nn 008mamaa
008 130418s2013 gw | s |||| 0|eng d
020 # # |a 9783642355363  |9 978-3-642-35536-3 
024 7 # |a 10.1007/978-3-642-35536-3  |2 doi 
050 # 4 |a Q342 
072 # 7 |a UYQ  |2 bicssc 
072 # 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 # |a Viattchenin, Dmitri A.  |e author. 
245 1 2 |a A Heuristic Approach to Possibilistic Clustering: Algorithms and Applications  |c by Dmitri A. Viattchenin.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XII, 227 p. 98 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Studies in Fuzziness and Soft Computing,  |v 297  |x 1434-9922 ; 
505 0 # |a Introduction -- Heuristic Algorithms of Possibilistic Clustering -- Clustering Approaches for the Uncertain Data -- Applications of the Heuristic Algorithms of Possibilistic Clustering. 
520 # # |a The present book outlines a new approach to possibilistic clustering in which the sought clustering structure of the set of objects is based directly on the formal definition of fuzzy cluster and the possibilistic memberships are determined directly from the values of the pairwise similarity of objects. ��The proposed approach can be used for solving different classification problems. Here, some techniques that might be useful at this purpose are outlined, including a methodology for constructing a set of labeled objects for a semi-supervised clustering algorithm, a methodology for reducing analyzed attribute space dimensionality and a methods for asymmetric data processing. Moreover,� a technique for constructing a subset of the most appropriate alternatives for a set of weak fuzzy preference relations, which are defined on a universe of alternatives, is described in detail, and a method for rapidly prototyping the Mamdani s fuzzy inference systems is introduced. This book addresses engineers, scientists, professors, students and post-graduate students, who are interested in and work with fuzzy clustering and its applications 
650 # 0 |a Engineering. 
650 # 0 |a Data mining. 
650 # 0 |a Artificial intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642355356 
830 # 0 |a Studies in Fuzziness and Soft Computing,  |v 297  |x 1434-9922 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-35536-3 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)