Long-Memory Processes Probabilistic Properties and Statistical Methods /

Long-memory processes are known to play an important part in many areas of science and technology, including physics, geophysics, hydrology, telecommunications, economics, finance, climatology, and network engineering. In the last 20 years enormous progress has been made in understanding the probabi...

Full description

Bibliographic Details
Main Authors: Beran, Jan. (Author), Feng, Yuanhua. (Author), Ghosh, Sucharita. (Author), Kulik, Rafal. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-35512-7
LEADER 03420nam a22005175i 4500
001 15397
003 DE-He213
005 20130727074840.0
007 cr nn 008mamaa
008 130514s2013 gw | s |||| 0|eng d
020 # # |a 9783642355127  |9 978-3-642-35512-7 
024 7 # |a 10.1007/978-3-642-35512-7  |2 doi 
050 # 4 |a QA276-280 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 # |a Beran, Jan.  |e author. 
245 1 0 |a Long-Memory Processes  |b Probabilistic Properties and Statistical Methods /  |c by Jan Beran, Yuanhua Feng, Sucharita Ghosh, Rafal Kulik.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XVII, 884 p. 89 illus., 60 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Definition of Long Memory -- Origins and Generation of Long Memory -- Mathematical Concepts -- Limit Theorems -- Statistical Inference for Stationary Processes -- Statistical Inference for Nonlinear Processes -- Statistical Inference for Nonstationary Processes -- Forecasting -- Spatial and Space-Time Processes -- Resampling -- Function Spaces -- Regularly Varying Functions -- Vague Convergence -- Some Useful Integrals -- Notation and Abbreviations. 
520 # # |a Long-memory processes are known to play an important part in many areas of science and technology, including physics, geophysics, hydrology, telecommunications, economics, finance, climatology, and network engineering. In the last 20 years enormous progress has been made in understanding the probabilistic foundations and statistical principles of such processes. This book provides a timely and comprehensive review, including a thorough discussion of mathematical and probabilistic foundations and statistical methods, emphasizing their practical motivation and mathematical justification. Proofs of the main theorems are provided and data examples illustrate practical aspects. This book will be a valuable resource for researchers and graduate students in statistics, mathematics, econometrics and other quantitative areas, as well as for practitioners and applied researchers who need to analyze data in which long memory, power laws, self-similar scaling or fractal properties are relevant. 
650 # 0 |a Statistics. 
650 # 0 |a Distribution (Probability theory). 
650 # 0 |a Mathematical statistics. 
650 # 0 |a Economics  |x Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
700 1 # |a Feng, Yuanhua.  |e author. 
700 1 # |a Ghosh, Sucharita.  |e author. 
700 1 # |a Kulik, Rafal.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642355110 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-35512-7 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)