Advanced Statistical Methods for Astrophysical Probes of Cosmology

This thesis explores advanced Bayesian statistical methods for extracting key information for cosmological model selection, parameter inference and forecasting from astrophysical observations. Bayesian model selection provides a measure of how good models in a set are relative to each other - but wh...

Full description

Bibliographic Details
Main Author: March, Marisa Cristina. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Springer Theses, Recognizing Outstanding Ph.D. Research,
Subjects:
Online Access:View fulltext via EzAccess
LEADER 02885nam a22004455i 4500
001 15327
003 DE-He213
005 20130727071620.0
007 cr nn 008mamaa
008 130125s2013 gw | s |||| 0|eng d
020 # # |a 9783642350603  |9 978-3-642-35060-3 
024 7 # |a 10.1007/978-3-642-35060-3  |2 doi 
050 # 4 |a QB980-991 
072 # 7 |a PHR  |2 bicssc 
072 # 7 |a SCI015000  |2 bisacsh 
082 0 4 |a 523.1  |2 23 
100 1 # |a March, Marisa Cristina.  |e author. 
245 1 0 |a Advanced Statistical Methods for Astrophysical Probes of Cosmology  |c by Marisa Cristina March.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XX, 177 p. 46 illus., 11 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 # |a Introduction -- Cosmology background -- Dark energy and apparent late time acceleration -- Supernovae Ia -- Statistical techniques -- Bayesian Doubt: Should we doubt the Cosmological Constant? -- Bayesian parameter inference for SNeIa data -- Robustness to Systematic Error for Future Dark Energy Probes -- Summary and Conclusions -- Index. 
520 # # |a This thesis explores advanced Bayesian statistical methods for extracting key information for cosmological model selection, parameter inference and forecasting from astrophysical observations. Bayesian model selection provides a measure of how good models in a set are relative to each other - but what if the best model is missing and not included in the set? Bayesian Doubt is an approach which addresses this problem and seeks to deliver an absolute rather than a relative measure of how good a model is. Supernovae type Ia were the first astrophysical observations to indicate the late time acceleration of the Universe - this work presents a detailed Bayesian Hierarchical Model to infer the cosmological parameters (in particular dark energy) from observations of these supernovae type Ia. 
650 # 0 |a Physics. 
650 1 4 |a Physics. 
650 2 4 |a Cosmology. 
650 2 4 |a Astronomy, Observations and Techniques. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642350597 
830 # 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |z View fulltext via EzAccess  |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-35060-3 
912 # # |a ZDB-2-PHA 
950 # # |a Physics and Astronomy (Springer-11651)