Non-fickian Solute Transport in Porous Media A Mechanistic and Stochastic Theory /

The advection-dispersion equation that is used to model the solute transport in a porous medium is based on the premise that the fluctuating components of the flow velocity, hence the fluxes, due to a porous matrix can be assumed to obey a relationship similar to Ficks law. This introduces phenomen...

Full description

Bibliographic Details
Main Author: Kulasiri, Don. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Advances in Geophysical and Environmental Mechanics and Mathematics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-34985-0
LEADER 02840nam a22004695i 4500
001 15314
003 DE-He213
005 20130727071600.0
007 cr nn 008mamaa
008 130420s2013 gw | s |||| 0|eng d
020 # # |a 9783642349850  |9 978-3-642-34985-0 
024 7 # |a 10.1007/978-3-642-34985-0  |2 doi 
050 # 4 |a QC801-809 
072 # 7 |a PHVG  |2 bicssc 
072 # 7 |a SCI032000  |2 bisacsh 
082 0 4 |a 550  |2 23 
082 0 4 |a 526.1  |2 23 
100 1 # |a Kulasiri, Don.  |e author. 
245 1 0 |a Non-fickian Solute Transport in Porous Media  |b A Mechanistic and Stochastic Theory /  |c by Don Kulasiri.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a IX, 227 p. 93 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Advances in Geophysical and Environmental Mechanics and Mathematics,  |x 1866-8348 
505 0 # |a NonFickian Solute Transport -- Stochastic Differential Equations and Related Inverse Problems -- A Stochastic Model for Hydrodynamic Dispersion -- A Generalized Mathematical Model in One-dimension -- Theories of Fluctuations and Dissipation -- Multiscale, Generalised Stochastic Solute Transport Model in One Dimension -- The Stochastic Solute Transport Model in 2-Dimensions -- Multiscale Dispersion in 2 dimensions. 
520 # # |a The advection-dispersion equation that is used to model the solute transport in a porous medium is based on the premise that the fluctuating components of the flow velocity, hence the fluxes, due to a porous matrix can be assumed to obey a relationship similar to Fick s law. This introduces phenomenological coefficients which are dependent on the scale of the experiments. This book presents an approach, based on sound theories of stochastic calculus and differential equations, which removes this basic premise. This leads to a multiscale theory with scale independent coefficients. This book illustrates this outcome with available data at different scales, from experimental laboratory scales to regional scales. 
650 # 0 |a Geography. 
650 # 0 |a Physical geography. 
650 1 4 |a Earth Sciences. 
650 2 4 |a Geophysics/Geodesy. 
650 2 4 |a Fluid- and Aerodynamics. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642349843 
830 # 0 |a Advances in Geophysical and Environmental Mechanics and Mathematics,  |x 1866-8348 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-34985-0 
912 # # |a ZDB-2-EES 
950 # # |a Earth and Environmental Science (Springer-11646)