Singular Spectrum Analysis for Time Series

Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA seeks to decompose the original series into a sum of a small numb...

Full description

Bibliographic Details
Main Authors: Golyandina, Nina. (Author), Zhigljavsky, Anatoly. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:SpringerBriefs in Statistics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-34913-3
LEADER 03419nam a22004455i 4500
001 15301
003 DE-He213
005 20130727071546.0
007 cr nn 008mamaa
008 130125s2013 gw | s |||| 0|eng d
020 # # |a 9783642349133  |9 978-3-642-34913-3 
024 7 # |a 10.1007/978-3-642-34913-3  |2 doi 
050 # 4 |a QA276-280 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 # |a Golyandina, Nina.  |e author. 
245 1 0 |a Singular Spectrum Analysis for Time Series  |c by Nina Golyandina, Anatoly Zhigljavsky.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a IX, 120 p. 41 illus., 38 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a SpringerBriefs in Statistics,  |x 2191-544X 
505 0 # |a Introduction: Preliminaries -- SSA Methodology and the Structure of the Book -- SSA Topics Outside the Scope of this Book -- Common Symbols and Acronyms -- Basic SSA: The Main Algorithm -- Potential of Basic SSA -- Models of Time Series and SSA Objectives -- Choice of Parameters in Basic SSA -- Some Variations of Basic SSA -- SSA for Forecasting, interpolation, Filtration and Estimation: SSA Forecasting Algorithms -- LRR and Associated Characteristic Polynomials -- Recurrent Forecasting as Approximate Continuation -- Confidence Bounds for the Forecast -- Summary and Recommendations on Forecasting Parameters -- Case Study: Fortified Wine -- Missing Value Imputation -- Subspace-Based Methods and Estimation of Signal Parameters -- SSA and Filters. 
520 # # |a Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA seeks to decompose the original series into a sum of a small number of interpretable components such as trend, oscillatory components and noise. It is based on the singular value decomposition of a specific matrix constructed upon the time series. Neither a parametric model nor stationarity are assumed for the time series. This makes SSA a model-free method and hence enables SSA to have a very wide range of applicability. The present book is devoted to the methodology of SSA and shows how to use SSA both safely and with maximum effect. Potential readers of the book include: professional statisticians and econometricians, specialists in any discipline in which problems of time series analysis and forecasting occur, specialists in signal processing and those needed to extract signals from noisy data, and students taking courses on applied time series analysis. 
650 # 0 |a Statistics. 
650 # 0 |a Mathematical statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
700 1 # |a Zhigljavsky, Anatoly.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642349126 
830 # 0 |a SpringerBriefs in Statistics,  |x 2191-544X 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-34913-3 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)