Radial Basis Function (RBF) Neural Network Control for Mechanical Systems Design, Analysis and Matlab Simulation /

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design metho...

Full description

Bibliographic Details
Main Author: Liu, Jinkun. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-34816-7
LEADER 03077nam a22004455i 4500
001 15289
003 DE-He213
005 20130727071455.0
007 cr nn 008mamaa
008 130125s2013 gw | s |||| 0|eng d
020 # # |a 9783642348167  |9 978-3-642-34816-7 
024 7 # |a 10.1007/978-3-642-34816-7  |2 doi 
050 # 4 |a TJ212-225 
072 # 7 |a TJFM  |2 bicssc 
072 # 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 629.8  |2 23 
100 1 # |a Liu, Jinkun.  |e author. 
245 1 0 |a Radial Basis Function (RBF) Neural Network Control for Mechanical Systems  |b Design, Analysis and Matlab Simulation /  |c by Jinkun Liu.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XV, 365 p. 170 illus., 2 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Introduction -- RBF Neural Network Design and Simulation -- RBF Neural Network Control Based on Gradient Descent Algorithm -- Adaptive RBF Neural Network Control -- Neural Network Sliding Mode Control -- Adaptive RBF Control Based on Global Approximation -- Adaptive Robust RBF Control Based on Local Approximation -- Backstepping Control with RBF -- Digital RBF Neural Network Control -- Discrete Neural Network Control -- Adaptive RBF Observer Design and Sliding Mode Control. 
520 # # |a Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design. � This book is intended for the researchers in the fields of�neural adaptive�control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronautics. 
650 # 0 |a Engineering. 
650 # 0 |a Vibration. 
650 1 4 |a Engineering. 
650 2 4 |a Control. 
650 2 4 |a Vibration, Dynamical Systems, Control. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Mathematical Models of Cognitive Processes and Neural Networks. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642348150 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-34816-7 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)