Positive Linear Maps of Operator Algebras

This volume, setting out the theory of positive maps as it stands today, reflects the rapid growth in this area of mathematics since it was recognized in the 1990s that these applications of C*-algebras are crucial to the study of entanglement in quantum theory. The author, a leading authority on th...

Full description

Bibliographic Details
Main Author: Str̜mer, Erling. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Springer Monographs in Mathematics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-34369-8
LEADER 03288nam a22004815i 4500
001 15238
003 DE-He213
005 20130727061740.0
007 cr nn 008mamaa
008 121213s2013 gw | s |||| 0|eng d
020 # # |a 9783642343698  |9 978-3-642-34369-8 
024 7 # |a 10.1007/978-3-642-34369-8  |2 doi 
050 # 4 |a QA319-329.9 
072 # 7 |a PBKF  |2 bicssc 
072 # 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 # |a Str̜mer, Erling.  |e author. 
245 1 0 |a Positive Linear Maps of Operator Algebras  |c by Erling Str̜mer.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a VIII, 134 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 # |a Introduction -- 1 Generalities for positive maps -- 2 Jordan algebras and projection maps -- 3 Extremal positive maps -- 4 Choi matrices and dual functionals -- 5 Mapping cones -- 6 Dual cones -- 7 States and positive maps -- 8 Norms of positive maps -- Appendix: A.1 Topologies on B(H) -- A.2 Tensor products -- A.3 An extension theorem -- Bibliography -- Index . 
520 # # |a This volume, setting out the theory of positive maps as it stands today, reflects the rapid growth in this area of mathematics since it was recognized in the 1990s that these applications of C*-algebras are crucial to the study of entanglement in quantum theory. The author, a leading authority on the subject, sets out numerous results previously unpublished in book form. In addition to outlining the properties and structures of positive linear maps of operator algebras into the bounded operators on a Hilbert space, he guides readers through proofs of the Stinespring theorem and its applications to inequalities for positive maps. The text examines the maps<U+0019> positivity properties, as well as their associated linear functionals together with their density operators. It features special sections on extremal positive maps and Choi matrices. In sum, this is a vital publication that covers a full spectrum of matters relating to positive linear maps, of which a large proportion is relevant and applicable to today<U+0019>s quantum information theory. The latter sections of the book present the material in finite dimensions, while the text as a whole appeals to a wider and more general readership by keeping the mathematics as elementary as possible throughout.  
650 # 0 |a Mathematics. 
650 # 0 |a Matrix theory. 
650 # 0 |a Functional analysis. 
650 # 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642343681 
830 # 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-34369-8 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)