A Guide to the Classification Theorem for Compact Surfaces

This welcome boon for students of algebraic topology cuts a much-needed central path between other texts whose treatment of the classification theorem for compact surfaces is either too formalized and complex for those without detailed background knowledge, or too informal to afford students a compr...

Full description

Bibliographic Details
Main Authors: Gallier, Jean. (Author), Xu, Dianna. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Geometry and Computing, 9
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-34364-3
LEADER 03430nam a22004935i 4500
001 15237
003 DE-He213
005 20130727061741.0
007 cr nn 008mamaa
008 130217s2013 gw | s |||| 0|eng d
020 # # |a 9783642343643  |9 978-3-642-34364-3 
024 7 # |a 10.1007/978-3-642-34364-3  |2 doi 
050 # 4 |a QA611-614.97 
072 # 7 |a PBP  |2 bicssc 
072 # 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514  |2 23 
100 1 # |a Gallier, Jean.  |e author. 
245 1 2 |a A Guide to the Classification Theorem for Compact Surfaces  |c by Jean Gallier, Dianna Xu.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XII, 178 p. 40 illus., 20 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Geometry and Computing,  |v 9  |x 1866-6795 ; 
505 0 # |a The Classification Theorem: Informal Presentation -- Surfaces -- Simplices, Complexes, and Triangulations -- The Fundamental Group, Orientability -- Homology Groups -- The Classification Theorem for Compact Surfaces -- Viewing the Real Projective Plane in R3 -- Proof of Proposition 5.1 -- Topological Preliminaries -- History of the Classification Theorem -- Every Surface Can be Triangulated -- Notes . 
520 # # |a This welcome boon for students of algebraic topology cuts a much-needed central path between other texts whose treatment of the classification theorem for compact surfaces is either too formalized and complex for those without detailed background knowledge, or too informal to afford students a comprehensive insight into the subject. Its dedicated, student-centred approach details a near-complete proof of this theorem, widely admired for its efficacy and formal beauty. The authors present the technical tools needed to deploy the method effectively as well as demonstrating their use in a clearly structured, worked example. Ideal for students whose mastery of algebraic topology may be a work-in-progress, the text introduces key notions such as fundamental groups, homology groups, and the Euler-Poincar ̌characteristic. These prerequisites are the subject of detailed appendices that enable focused, discrete learning where it is required, without interrupting the carefully planned structure of the core exposition. Gently guiding readers through the principles, theory, and applications of the classification theorem, the authors aim to foster genuine confidence in its use and in so doing encourage readers to move on to a deeper exploration of the versatile and valuable techniques available in algebraic topology. 
650 # 0 |a Mathematics. 
650 # 0 |a Topology. 
650 # 0 |a Algebraic topology. 
650 # 0 |a Cell aggregation  |x Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Topology. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Algebraic Topology. 
700 1 # |a Xu, Dianna.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642343636 
830 # 0 |a Geometry and Computing,  |v 9  |x 1866-6795 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-34364-3 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)