Continuous-Time Markov Jump Linear Systems

It has been widely recognized nowadays the importance of introducing mathematical models that take into account possible sudden changes in the dynamical behavior of high-integrity systems or a safety-critical system. Such systems can be found in aircraft control, nuclear power stations, robotic man...

Full description

Bibliographic Details
Main Authors: Costa, Oswaldo L.V. (Author), Fragoso, Marcelo D. (Author), Todorov, Marcos G. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Probability and Its Applications,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-34100-7
LEADER 04063nam a22005535i 4500
001 15203
003 DE-He213
005 20130727061333.0
007 cr nn 008mamaa
008 121227s2013 gw | s |||| 0|eng d
020 # # |a 9783642341007  |9 978-3-642-34100-7 
024 7 # |a 10.1007/978-3-642-34100-7  |2 doi 
050 # 4 |a QA273.A1-274.9 
050 # 4 |a QA274-274.9 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a PBWL  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 # |a Costa, Oswaldo L.V.  |e author. 
245 1 0 |a Continuous-Time Markov Jump Linear Systems  |c by Oswaldo L.V. Costa, Marcelo D. Fragoso, Marcos G. Todorov.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XII, 286 p. 17 illus., 9 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Probability and Its Applications,  |x 1431-7028 
505 0 # |a 1.Introduction -- 2.A Few Tools and Notations -- 3.Mean Square Stability -- 4.Quadratic Optimal Control with Complete Observations -- 5.H2 Optimal Control With Complete Observations -- 6.Quadratic and H2 Optimal Control with Partial Observations -- 7.Best Linear Filter with Unknown (x(t), ı(t)) -- 8.H_$infty$ Control -- 9.Design Techniques -- 10.Some Numerical Examples -- A.Coupled Differential and Algebraic Riccati Equations -- B.The Adjoint Operator and Some Auxiliary Results -- References. - Notation and Conventions -- Index. 
520 # # |a It has been widely recognized nowadays the importance of introducing mathematical models that take into account possible sudden changes in the dynamical behavior of high-integrity systems or a safety-critical system. Such systems can be found in aircraft control, nuclear power stations, robotic manipulator systems, integrated communication networks and large-scale flexible structures for space stations, and are inherently vulnerable to abrupt changes in their structures caused by component or interconnection failures. In this regard, a particularly interesting class of models is the so-called Markov jump linear systems (MJLS), which have been used in numerous applications including robotics, economics and wireless communication. Combining probability and operator theory, the present volume provides a unified and rigorous treatment of recent results in control theory of continuous-time MJLS. This unique approach is of great interest to experts working in the field of linear systems with Markovian jump parameters or in stochastic control. The volume focuses on one of the few cases of stochastic control problems with an actual explicit solution and offers material well-suited to coursework, introducing students to an interesting and active research area. The book is addressed to researchers working in control and signal processing engineering. Prerequisites include a solid background in classical linear control theory, basic familiarity with continuous-time Markov chains and probability theory, and some elementary knowledge of operator theory. 
650 # 0 |a Mathematics. 
650 # 0 |a Differentiable dynamical systems. 
650 # 0 |a Operator theory. 
650 # 0 |a Systems theory. 
650 # 0 |a Distribution (Probability theory). 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Operator Theory. 
700 1 # |a Fragoso, Marcelo D.  |e author. 
700 1 # |a Todorov, Marcos G.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642340994 
830 # 0 |a Probability and Its Applications,  |x 1431-7028 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-34100-7 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)