Composite Asymptotic Expansions

The purpose of these lecture notes is to develop a theory of asymptotic expansions for functions involving two variables, while at the same time using functions involving one variable and functions of the quotient of these two variables. Such composite asymptotic expansions (CAsEs) are particularly...

Full description

Bibliographic Details
Main Authors: Fruchard, Augustin. (Author), Schf̃ke, Reinhard. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Lecture Notes in Mathematics, 2066
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-34035-2
LEADER 03029nam a22004815i 4500
001 15193
003 DE-He213
005 20130727061308.0
007 cr nn 008mamaa
008 121215s2013 gw | s |||| 0|eng d
020 # # |a 9783642340352  |9 978-3-642-34035-2 
024 7 # |a 10.1007/978-3-642-34035-2  |2 doi 
050 # 4 |a QA401-425 
072 # 7 |a PBKJ  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 511.4  |2 23 
100 1 # |a Fruchard, Augustin.  |e author. 
245 1 0 |a Composite Asymptotic Expansions  |c by Augustin Fruchard, Reinhard Schf̃ke.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a X, 161 p. 21 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 2066  |x 0075-8434 ; 
505 0 # |a Four Introductory Examples -- Composite Asymptotic Expansions: General Study -- Composite Asymptotic Expansions: Gevrey Theory -- A Theorem of Ramis-Sibuya Type -- Composite Expansions and Singularly Perturbed Differential Equations -- Applications -- Historical Remarks -- References -- Index. 
520 # # |a The purpose of these lecture notes is to develop a theory of asymptotic expansions for functions involving two variables, while at the same time using functions involving one variable and functions of the quotient of these two variables. Such composite asymptotic expansions (CAsEs) are particularly well-suited to describing solutions of singularly perturbed ordinary differential equations near turning points. CAsEs imply inner and outer expansions near turning points. Thus our approach is closely related to the method of matched asymptotic expansions. CAsEs offer two unique advantages, however. First, they provide uniform expansions near a turning point and away from it. Second, a Gevrey version of CAsEs is available and detailed in the lecture notes. Three problems are presented in which CAsEs are useful. The first application concerns canard solutions near a multiple turning point. The second application concerns so-called non-smooth or angular canard solutions. Finally an Ackerberg-O<U+0019>Malley resonance problem is solved. 
650 # 0 |a Mathematics. 
650 # 0 |a Differential Equations. 
650 # 0 |a Sequences (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Sequences, Series, Summability. 
700 1 # |a Schf̃ke, Reinhard.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642340345 
830 # 0 |a Lecture Notes in Mathematics,  |v 2066  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-34035-2 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)