Asymptotic Solutions of Strongly Nonlinear Systems of Differential Equations

The book is dedicated to the construction of particular solutions of systems of ordinary differential equations in the form of series that are analogous to those used in Lyapunovs first method. A prominent place is given to asymptotic solutions that tend to an equilibrium position, especially in th...

Full description

Bibliographic Details
Main Authors: Kozlov, Valery V. (Author), Furta, Stanislav D. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Springer Monographs in Mathematics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-33817-5
LEADER 03115nam a22004935i 4500
001 15159
003 DE-He213
005 20130727061138.0
007 cr nn 008mamaa
008 130125s2013 gw | s |||| 0|eng d
020 # # |a 9783642338175  |9 978-3-642-33817-5 
024 7 # |a 10.1007/978-3-642-33817-5  |2 doi 
050 # 4 |a QA372 
072 # 7 |a PBKJ  |2 bicssc 
072 # 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.352  |2 23 
100 1 # |a Kozlov, Valery V.  |e author. 
245 1 0 |a Asymptotic Solutions of Strongly Nonlinear Systems of Differential Equations  |c by Valery V. Kozlov, Stanislav D. Furta.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XIX, 262 p. 2 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 # |a Preface -- Semi-quasihomogeneous systems of ordinary differential equations -- 2. The critical case of purely imaginary kernels -- 3. Singular problems -- 4. The inverse problem for the Lagrange theorem on the stability of equilibrium and other related problems -- Appendix A. Nonexponential asymptotic solutions of systems of functional-differential equations -- Appendix B. Arithmetic properties of the eigenvalues of the Kovalevsky matrix and conditions for the nonintegrability of semi-quasihomogeneous systems of ordinary dierential equations -- Bibliography. 
520 # # |a The book is dedicated to the construction of particular solutions of systems of ordinary differential equations in the form of series that are analogous to those used in Lyapunov s first method. A prominent place is given to asymptotic solutions that tend to an equilibrium position, especially in the strongly nonlinear case, where the existence of such solutions can t be inferred on the basis of the first approximation alone. The book is illustrated with a large number of concrete examples of systems in which the presence of a particular solution of a certain class is related to special properties of the system s dynamic behavior. It is a book for students and specialists who work with dynamical systems in the fields of mechanics, mathematics, and theoretical physics. 
650 # 0 |a Mathematics. 
650 # 0 |a Differentiable dynamical systems. 
650 # 0 |a Differential Equations. 
650 # 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Mathematical Methods in Physics. 
700 1 # |a Furta, Stanislav D.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642338168 
830 # 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-33817-5 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)