Invariant Random Fields on Spaces with a Group Action

The author describes the current state of the art in the theory of invariant random fields. This theory is based on several different areas of mathematics, including probability theory, differential geometry, harmonic analysis, and special functions. The present volume unifies many results scattered...

Full description

Bibliographic Details
Main Author: Malyarenko, Anatoliy. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Probability and Its Applications,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-33406-1
LEADER 02681nam a22004815i 4500
001 15106
003 DE-He213
005 20130727060709.0
007 cr nn 008mamaa
008 121026s2013 gw | s |||| 0|eng d
020 # # |a 9783642334061  |9 978-3-642-33406-1 
024 7 # |a 10.1007/978-3-642-33406-1  |2 doi 
050 # 4 |a QA273.A1-274.9 
050 # 4 |a QA274-274.9 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a PBWL  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 # |a Malyarenko, Anatoliy.  |e author. 
245 1 0 |a Invariant Random Fields on Spaces with a Group Action  |c by Anatoliy Malyarenko.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XVII, 261 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Probability and Its Applications,  |x 1431-7028 
505 0 # |a 1.Introduction -- 2.Spectral Expansions -- 3.L2 Theory of Invariant Random Fields -- 4.Sample Path Properties of Gaussian Invariant Random Fields -- 5.Applications -- A.Mathematical Background -- References -- Index. 
520 # # |a The author describes the current state of the art in the theory of invariant random fields. This theory is based on several different areas of mathematics, including probability theory, differential geometry, harmonic analysis, and special functions. The present volume unifies many results scattered throughout the mathematical, physical, and engineering literature, as well as it�introduces new results from this area first proved by the author. The book also presents many practical applications, in particular in such highly interesting areas as approximation theory, cosmology and earthquake engineering. It is intended for researchers and specialists working in the fields of stochastic processes, statistics, functional analysis, astronomy, and engineering.� � ������� 
650 # 0 |a Mathematics. 
650 # 0 |a Distribution (Probability theory). 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Cosmology. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642334054 
830 # 0 |a Probability and Its Applications,  |x 1431-7028 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-33406-1 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)