Synergies of Soft Computing and Statistics for Intelligent Data Analysis

In recent years there has been a growing interest to extend classical methods for data analysis. The aim is to allow a more flexible modeling of phenomena such as uncertainty, imprecision or ignorance. Such extensions of classical probability theory and statistics are useful in many real-life situat...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Kruse, Rudolf. (Editor), Berthold, Michael R. (Editor), Moewes, Christian. (Editor), Gil, Mara̕ ℓngeles. (Editor), Grzegorzewski, PrzemysBaw. (Editor), Hryniewicz, Olgierd. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Advances in Intelligent Systems and Computing, 190
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-33042-1
LEADER 03302nam a22005055i 4500
001 15057
003 DE-He213
005 20130727060231.0
007 cr nn 008mamaa
008 120913s2013 gw | s |||| 0|eng d
020 # # |a 9783642330421  |9 978-3-642-33042-1 
024 7 # |a 10.1007/978-3-642-33042-1  |2 doi 
050 # 4 |a Q342 
072 # 7 |a UYQ  |2 bicssc 
072 # 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 # |a Kruse, Rudolf.  |e editor. 
245 1 0 |a Synergies of Soft Computing and Statistics for Intelligent Data Analysis  |c edited by Rudolf Kruse, Michael R. Berthold, Christian Moewes, Mara̕ ℓngeles Gil, PrzemysBaw Grzegorzewski, Olgierd Hryniewicz.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XVI, 584 p. 74 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Advances in Intelligent Systems and Computing,  |v 190  |x 2194-5357 ; 
505 0 # |a PART I Invited Papers -- PART II Foundations -- PART III Statistical Methods -- PART IV Mathematical Aspects -- PART V Engineering. 
520 # # |a In recent years there has been a growing interest to extend classical methods for data analysis. The aim is to allow a more flexible modeling of phenomena such as uncertainty, imprecision or ignorance. Such extensions of classical probability theory and statistics are useful in many real-life situations, since uncertainties in data are not only present in the form of randomness --- various types of incomplete or subjective information have to be handled. About twelve years ago the idea of strengthening the dialogue between the various research communities in the field of data analysis was born and resulted in the International Conference Series on Soft Methods in Probability and Statistics (SMPS). This book gathers contributions presented at the SMPS'2012 held in Konstanz, Germany. Its aim is to present recent results illustrating new trends in intelligent data analysis. It gives a comprehensive overview of current research into the fusion of soft computing methods with probability and statistics. Synergies of both fields might improve intelligent data analysis methods in terms of robustness to noise and applicability to larger datasets, while being able to efficiently obtain understandable solutions of real-world problems. 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 # |a Berthold, Michael R.  |e editor. 
700 1 # |a Moewes, Christian.  |e editor. 
700 1 # |a Gil, Mara̕ ℓngeles.  |e editor. 
700 1 # |a Grzegorzewski, PrzemysBaw.  |e editor. 
700 1 # |a Hryniewicz, Olgierd.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642330414 
830 # 0 |a Advances in Intelligent Systems and Computing,  |v 190  |x 2194-5357 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-33042-1 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)