Quantile Regression for Spatial Data

Quantile regression analysis differs from more conventional regression models in its emphasis on distributions.�Whereas standard regression procedures show how the expected value of the dependent variable responds to a change in an explanatory variable, quantile regressions imply predicted changes f...

Full description

Bibliographic Details
Main Author: McMillen, Daniel P. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:SpringerBriefs in Regional Science,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-31815-3
LEADER 02755nam a22004575i 4500
001 14894
003 DE-He213
005 20130727042508.0
007 cr nn 008mamaa
008 120731s2013 gw | s |||| 0|eng d
020 # # |a 9783642318153  |9 978-3-642-31815-3 
024 7 # |a 10.1007/978-3-642-31815-3  |2 doi 
050 # 4 |a HT388 
050 # 4 |a HD28-9999 
072 # 7 |a KCP  |2 bicssc 
072 # 7 |a GTB  |2 bicssc 
072 # 7 |a BUS067000  |2 bisacsh 
082 0 4 |a 338.9  |2 23 
100 1 # |a McMillen, Daniel P.  |e author. 
245 1 0 |a Quantile Regression for Spatial Data  |c by Daniel P. McMillen.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a IX, 66 p. 47 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a SpringerBriefs in Regional Science,  |x 2192-0427 
505 0 # |a 1�Quantile Regression: An Overview. 2 Linear and Nonparametric Quantile Regression -- 3 A Quantile Regression Analysis of Assessment Regressivity.-4 Quantile Version of the Spatial AR Model -- 5 . Conditionally Parametric Quantile Regression.-�6 Guide to Further Reading -- References. 
520 # # |a Quantile regression analysis differs from more conventional regression models in its emphasis on distributions.�Whereas standard regression procedures show how the expected value of the dependent variable responds to a change in an explanatory variable, quantile regressions imply predicted changes for the entire distribution of the dependent variable.� Despite its advantages, quantile regression is still not commonly used in the analysis of spatial data. The objective of this book is to make quantile regression procedures more accessible for researchers working with spatial data sets. The emphasis is on interpretation of quantile regression results. A series of examples using both simulated and actual data sets shows how readily seemingly complex quantile regression results can be interpreted with sets of well-constructed graphs.� Both parametric and nonparametric versions of spatial models are considered in detail. 
650 # 0 |a Economics. 
650 # 0 |a Regional economics. 
650 1 4 |a Economics/Management Science. 
650 2 4 |a Regional/Spatial Science. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642318146 
830 # 0 |a SpringerBriefs in Regional Science,  |x 2192-0427 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-31815-3 
912 # # |a ZDB-2-SBE 
950 # # |a Business and Economics (Springer-11643)