Factoring Ideals in Integral Domains

This volume provides a wide-ranging survey of, and many new results on, various important types of ideal factorization actively investigated by several authors in recent years. Examples of domains studied include (1) those with weak factorization, in which each nonzero, nondivisorial ideal can be f...

Full description

Bibliographic Details
Main Authors: Fontana, Marco. (Author), Houston, Evan. (Author), Lucas, Thomas. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Lecture Notes of the Unione Matematica Italiana, 14
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-31712-5
LEADER 02431nam a22005055i 4500
001 14878
003 DE-He213
005 20130727042402.0
007 cr nn 008mamaa
008 120914s2013 gw | s |||| 0|eng d
020 # # |a 9783642317125  |9 978-3-642-31712-5 
024 7 # |a 10.1007/978-3-642-31712-5  |2 doi 
050 # 4 |a QA150-272 
072 # 7 |a PBF  |2 bicssc 
072 # 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 # |a Fontana, Marco.  |e author. 
245 1 0 |a Factoring Ideals in Integral Domains  |c by Marco Fontana, Evan Houston, Thomas Lucas.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a VIII, 164 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes of the Unione Matematica Italiana,  |v 14  |x 1862-9113 ; 
520 # # |a This volume provides a wide-ranging survey of, and many new results on, various important types of ideal factorization actively investigated by several authors in recent years. Examples of domains studied include (1) those with weak factorization, in which each nonzero, nondivisorial ideal can be factored as the product of its divisorial closure and a product of maximal ideals and (2) those with pseudo-Dedekind factorization, in which each nonzero, noninvertible ideal can be factored as the product of an invertible ideal with a product of pairwise comaximal prime ideals. Pr<U+00fc>fer domains play a central role in our study, but many non-Pr<U+00fc>fer examples are considered as well. 
650 # 0 |a Mathematics. 
650 # 0 |a Algebra. 
650 # 0 |a Geometry, algebraic. 
650 # 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Number Theory. 
700 1 # |a Houston, Evan.  |e author. 
700 1 # |a Lucas, Thomas.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642317118 
830 # 0 |a Lecture Notes of the Unione Matematica Italiana,  |v 14  |x 1862-9113 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-31712-5 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)